当前位置:
X-MOL 学术
›
Mater. Today Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Unraveling interfacial thermal transport in β-Ga2O3/h-BN van der Waals heterostructures
Materials Today Physics ( IF 10.0 ) Pub Date : 2024-07-09 , DOI: 10.1016/j.mtphys.2024.101506 Soonsung So , Joo-Hyoung Lee
Materials Today Physics ( IF 10.0 ) Pub Date : 2024-07-09 , DOI: 10.1016/j.mtphys.2024.101506 Soonsung So , Joo-Hyoung Lee
As global power consumption rapidly increases with generation of significant amount of heat, efficient thermal management in electronic equipments becomes an urgent task, which requires a comprehensive understanding on thermal transport in heterostructures within devices. Here, we present detailed examination on the interfacial thermal transport of van der Waals (vdW) heterostructures, composed of -GaO and hexagonal boron nitride (h-BN) multilayers. Through extensive molecular dynamics simulations, we show that the interfacial thermal conductance (ITC) of -GaO/h-BN system becomes as high as 136.8MWmK, and the high ITC value results from substantial phonon interaction across the interface. In addition to the pristine interface, the effect of structural modulation including strain, vacancies and substitutional defects in h-BN multilayers on the ITC is also analyzed, and it is demonstrated that there exists ranges of strain values and defect concentrations which increase the ITC, and that the enhanced ITC is the result of the interplay among the interfacial distance, the overlap in the phonon density of states and elastic mismatch between -GaO and h-BN multilayers. These results not only provide insights into understanding interfacial phonon transport in vdW systems but also offer guiding principles for designing efficient heat dissipators in device applications.
中文翻译:
揭示 β-Ga2O3/h-BN 范德华异质结构中的界面热传输
随着全球功耗随着大量热量的产生而迅速增加,电子设备的高效热管理成为一项紧迫的任务,这需要全面了解设备内异质结构的热传输。在这里,我们详细研究了由-GaO和六方氮化硼(h-BN)多层组成的范德华(vdW)异质结构的界面热传输。通过广泛的分子动力学模拟,我们发现-GaO/h-BN体系的界面热导(ITC)高达136.8MWmK,并且高ITC值是由于界面上大量的声子相互作用所致。除了原始界面外,还分析了 h-BN 多层结构调制(包括应变、空位和替代缺陷)对 ITC 的影响,并证明存在一定范围的应变值和缺陷浓度,从而增加了 ITC,并且增强的ITC是界面距离、声子态密度重叠以及-GaO和h-BN多层之间的弹性失配之间相互作用的结果。这些结果不仅为理解 vdW 系统中的界面声子传输提供了见解,而且还为在设备应用中设计高效散热器提供了指导原则。
更新日期:2024-07-09
中文翻译:
揭示 β-Ga2O3/h-BN 范德华异质结构中的界面热传输
随着全球功耗随着大量热量的产生而迅速增加,电子设备的高效热管理成为一项紧迫的任务,这需要全面了解设备内异质结构的热传输。在这里,我们详细研究了由-GaO和六方氮化硼(h-BN)多层组成的范德华(vdW)异质结构的界面热传输。通过广泛的分子动力学模拟,我们发现-GaO/h-BN体系的界面热导(ITC)高达136.8MWmK,并且高ITC值是由于界面上大量的声子相互作用所致。除了原始界面外,还分析了 h-BN 多层结构调制(包括应变、空位和替代缺陷)对 ITC 的影响,并证明存在一定范围的应变值和缺陷浓度,从而增加了 ITC,并且增强的ITC是界面距离、声子态密度重叠以及-GaO和h-BN多层之间的弹性失配之间相互作用的结果。这些结果不仅为理解 vdW 系统中的界面声子传输提供了见解,而且还为在设备应用中设计高效散热器提供了指导原则。