当前位置:
X-MOL 学术
›
Energy Convers. Manag.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Energy, exergy, exergoeconomic, economic, and environmental analyses and multi-objective optimization of a novel combined cooling and power system with dual-pressure Kalina cycle-absorption refrigeration
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2024-07-10 , DOI: 10.1016/j.enconman.2024.118781 Xinle Yang , Zhenchao Yan , Shujuan Bu , Weikang Li , Ning Yu , Chang Su , Shengdong Lu , Xin Wang
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2024-07-10 , DOI: 10.1016/j.enconman.2024.118781 Xinle Yang , Zhenchao Yan , Shujuan Bu , Weikang Li , Ning Yu , Chang Su , Shengdong Lu , Xin Wang
A novel combined cooling and power system, the dual-pressure Kalina cycle-absorption refrigeration (DPKC-AR-CCP), is proposed for the cascade utilization of waste heat from high-temperature flue gas and jacket water from internal combustion engines. A pneumatic booster pump unit is employed to increase the inlet pressure of the low-pressure expander, with heat generated during the compression process utilized for preheating the ammonia/water mixture, and exhaust gas from the low-pressure expander is combined with driving gas for absorption refrigeration. By integrating the first and second laws of thermodynamics with the SPECO Methodology, models for energy, exergy, exergoeconomy, economy, and environment of the DPKC-AR-CCP system are developed. A multi-objective optimization model is formulated with maximum exergy efficiency, minimum total exergy cost rate, and maximum annual equivalent carbon dioxide (CO) emission reduction as objective functions. MATLAB software (combined with REFPROP software) is utilized for simulation and multi-objective optimization. The performance of each component under specific conditions is assessed, and a comparison with the simple absorption refrigeration/Kalina cogeneration system (AR/KC) highlights the advantages of the DPKC-AR-CCP system; an investigation into the effects of different operating parameters on performance is conducted. The results indicate that, under identical operational parameters, the DPKC-AR-CCP system exhibits a substantial increase in net output power (230.2 %), cooling capacity (98.7 %), and exergy efficiency (148.8 %) compared to the simple AR/KC system; payback period is reduced by 64.8 %; and annual equivalent CO emissions are decreased by 202.2 %. However, there is an increase in the total exergy cost rate by 90.5 %. The optimal concentration of ammonia/water is determined to be 0.816/0.184, with a heat exchanger outlet temperature of 341.07 K, driving pressure of 0.654 MPa, and low-pressure expander inlet pressure of 5.064 MPa. Correspondingly, the optimal exergy efficiency is 87.2 %, the annual reduction in CO emissions is 5.53 × 10 kg, and the total exergy cost rate is 288.48$/h.
中文翻译:
采用双压 Kalina 循环吸收式制冷的新型冷却与电力联合系统的能源、火用、火用经济、经济和环境分析以及多目标优化
提出了一种新型的冷电联合系统——双压卡林纳循环吸收式制冷(DPKC-AR-CCP),用于梯级利用内燃机高温烟气和水套水的余热。采用气动增压泵组提高低压膨胀机入口压力,利用压缩过程中产生的热量预热氨/水混合物,低压膨胀机排出的废气与驱动气体结合,吸收式制冷。通过将热力学第一定律和第二定律与 SPECO 方法相结合,开发了 DPKC-AR-CCP 系统的能量、火用、火用经济、经济和环境模型。建立了以最大火用效率、最小火用总成本率和最大年当量二氧化碳(CO)减排量为目标函数的多目标优化模型。利用MATLAB软件(结合REFPROP软件)进行仿真和多目标优化。评估特定条件下各组件的性能,并与简单吸收式制冷/卡林纳热电联产系统(AR/KC)进行比较,凸显了DPKC-AR-CCP系统的优势;对不同操作参数对性能的影响进行了调查。结果表明,在相同的运行参数下,DPKC-AR-CCP 系统与简单的 AR/ KC系统;投资回收期缩短64.8%;年二氧化碳当量排放量减少202.2%。 然而,总火用成本率增加了90.5%。确定最佳氨/水浓度为0.816/0.184,换热器出口温度为341.07 K,驱动压力为0.654 MPa,低压膨胀机入口压力为5.064 MPa。相应地,最佳火用效率为87.2%,年减少CO排放量为5.53×10 kg,总火用成本率为288.48$/h。
更新日期:2024-07-10
中文翻译:
采用双压 Kalina 循环吸收式制冷的新型冷却与电力联合系统的能源、火用、火用经济、经济和环境分析以及多目标优化
提出了一种新型的冷电联合系统——双压卡林纳循环吸收式制冷(DPKC-AR-CCP),用于梯级利用内燃机高温烟气和水套水的余热。采用气动增压泵组提高低压膨胀机入口压力,利用压缩过程中产生的热量预热氨/水混合物,低压膨胀机排出的废气与驱动气体结合,吸收式制冷。通过将热力学第一定律和第二定律与 SPECO 方法相结合,开发了 DPKC-AR-CCP 系统的能量、火用、火用经济、经济和环境模型。建立了以最大火用效率、最小火用总成本率和最大年当量二氧化碳(CO)减排量为目标函数的多目标优化模型。利用MATLAB软件(结合REFPROP软件)进行仿真和多目标优化。评估特定条件下各组件的性能,并与简单吸收式制冷/卡林纳热电联产系统(AR/KC)进行比较,凸显了DPKC-AR-CCP系统的优势;对不同操作参数对性能的影响进行了调查。结果表明,在相同的运行参数下,DPKC-AR-CCP 系统与简单的 AR/ KC系统;投资回收期缩短64.8%;年二氧化碳当量排放量减少202.2%。 然而,总火用成本率增加了90.5%。确定最佳氨/水浓度为0.816/0.184,换热器出口温度为341.07 K,驱动压力为0.654 MPa,低压膨胀机入口压力为5.064 MPa。相应地,最佳火用效率为87.2%,年减少CO排放量为5.53×10 kg,总火用成本率为288.48$/h。