当前位置: X-MOL 学术npj Clim. Atmos. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Key propagation pathways of extreme precipitation events revealed by climate networks
npj Climate and Atmospheric Science ( IF 8.5 ) Pub Date : 2024-07-12 , DOI: 10.1038/s41612-024-00701-6
Kaiwen Li , Yu Huang , Kai Liu , Ming Wang , Fenying Cai , Jianxin Zhang , Niklas Boers

The comprehensive understanding of propagation patterns of extreme precipitation events (EPEs) is essential for early warning of associated hazards such as floods and landslides. In this study, we utilize climate networks based on an event synchronization measure to investigate the propagation patterns of EPEs over the global land masses, and identify 16 major propagation pathways. We explain them in association with regional weather systems, topographic effects, and travelling Rossby wave patterns. We also demonstrate that the revealed propagation pathways carry substantial EPE predictability in certain areas, such as in the Appalachian, the Andes mountains. Our results help to improve the understanding of key propagation patterns of EPEs, where the global diversity of the propagated patterns of EPEs and corresponding potential predictability provide prior knowledge for predicting EPEs, and demonstrate the power of climate network approaches to study the spatiotemporal connectivity of extreme events in the climate system.



中文翻译:


气候网络揭示的极端降水事件的关键传播路径



全面了解极端降水事件(EPE)的传播模式对于洪水和山体滑坡等相关灾害的早期预警至关重要。在这项研究中,我们利用基于事件同步测量的气候网络来研究 EPE 在全球陆地上的传播模式,并确定了 16 条主要传播途径。我们结合区域天气系统、地形影响和罗斯比行波模式来解释它们。我们还证明,所揭示的传播路径在某些地区(例如阿巴拉契亚山脉、安第斯山脉)具有相当大的 EPE 可预测性。我们的研究结果有助于提高对 EPE 关键传播模式的理解,其中 EPE 传播模式的全球多样性和相应的潜在可预测性为预测 EPE 提供了先验知识,并展示了气候网络方法研究极端气候时空连通性的力量。气候系统中的事件。

更新日期:2024-07-12
down
wechat
bug