当前位置:
X-MOL 学术
›
Adv. Synth. Catal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Cyclization Through Dual C(sp3)−H Functionalization
Advanced Synthesis & Catalysis ( IF 4.4 ) Pub Date : 2024-07-10 , DOI: 10.1002/adsc.202400762 Masoud Sadeghi 1
Advanced Synthesis & Catalysis ( IF 4.4 ) Pub Date : 2024-07-10 , DOI: 10.1002/adsc.202400762 Masoud Sadeghi 1
Affiliation
C(sp<sup>3</sup>)–H functionalization methods have been widely employed in many organic transformations such as cyclization reactions, heterocycle synthesis, cross‐coupling protocols, and photochemical transformations. Among these transformations, cyclization reaction through C(sp<sup>3</sup>)–H functionalization offers a direct route to convert simple linear substrates to complex products. There are three modes of utilizing C(sp<sup>3</sup>)–H bonds in cyclization reactions including single, double, and dual C(sp<sup>3</sup>)–H functionalization. As the most challenging mode, dual C(sp<sup>3</sup>)–H functionalization refers to converting two separate C(sp<sup>3</sup>)–H bonds in one molecule into desired C–Z bonds which can be employed in cyclization reactions. Cyclization reaction <i>via</i> dual functionalization of C(sp<sup>3</sup>)–H can be classified based on the C(sp<sup>3</sup>)–H reactivities. Therefore, these reactions can be categorized into three classes based on the types of C(sp<sup>3</sup>)–H bonds including activated‐activated, activated‐unactivated, and unactivated‐unactivated C(sp<sup>3</sup>)–H bonds. Most published reports for cyclization reactions <i>via</i> dual C(sp<sup>3</sup>)–H functionalization involve activated‐activated C(sp<sup>3</sup>)–H bonds. However, the number of reported papers on the other two classes has been growing. This review focuses on the dual C(sp<sup>3</sup>)–H functionalization protocols used for cyclization reactions and categorizes the published papers based on the types of C(sp<sup>3</sup>)–H bonds.
中文翻译:
通过双 C(sp3)−H 官能化进行环化
C(sp<sup>3</sup>)–H官能化方法已广泛应用于许多有机转化中,例如环化反应、杂环合成、交叉偶联方案和光化学转化。在这些转化中,通过 C(sp<sup>3</sup>)–H 官能化的环化反应提供了将简单线性底物转化为复杂产物的直接途径。在环化反应中存在三种利用 C(sp<sup>3</sup>)–H 键的模式,包括单、双和双 C(sp<sup>3</sup>)–H 官能化。作为最具挑战性的模式,双 C(sp<sup>3</sup>)–H 官能化是指将一个分子中两个独立的 C(sp<sup>3</sup>)–H 键转化为所需的C-Z键可用于环化反应。环化反应 <i>via</i> C(sp<sup>3</sup>)–H 的双官能化可根据 C(sp<sup>3</sup>) 进行分类)–H 反应性。因此,根据 C(sp<sup>3</sup>)–H 键的类型,这些反应可分为三类,包括活化-活化、活化-未活化和未活化-未活化 C(sp<sup) >3</sup>)–H 债券。大多数已发表的环化反应报告 <i>via</i> 双 C(sp<sup>3</sup>)–H 官能化涉及激活-激活 C(sp<sup>3</sup% 3E)–H键。然而,其他两类的论文报道数量一直在增长。本综述重点关注用于环化反应的双 C(sp<sup>3</sup>)–H 功能化方案,并根据 C(sp<sup>3</sup% 的类型对已发表的论文进行分类3E)–H键。
更新日期:2024-07-10
中文翻译:
通过双 C(sp3)−H 官能化进行环化
C(sp<sup>3</sup>)–H官能化方法已广泛应用于许多有机转化中,例如环化反应、杂环合成、交叉偶联方案和光化学转化。在这些转化中,通过 C(sp<sup>3</sup>)–H 官能化的环化反应提供了将简单线性底物转化为复杂产物的直接途径。在环化反应中存在三种利用 C(sp<sup>3</sup>)–H 键的模式,包括单、双和双 C(sp<sup>3</sup>)–H 官能化。作为最具挑战性的模式,双 C(sp<sup>3</sup>)–H 官能化是指将一个分子中两个独立的 C(sp<sup>3</sup>)–H 键转化为所需的C-Z键可用于环化反应。环化反应 <i>via</i> C(sp<sup>3</sup>)–H 的双官能化可根据 C(sp<sup>3</sup>) 进行分类)–H 反应性。因此,根据 C(sp<sup>3</sup>)–H 键的类型,这些反应可分为三类,包括活化-活化、活化-未活化和未活化-未活化 C(sp<sup) >3</sup>)–H 债券。大多数已发表的环化反应报告 <i>via</i> 双 C(sp<sup>3</sup>)–H 官能化涉及激活-激活 C(sp<sup>3</sup% 3E)–H键。然而,其他两类的论文报道数量一直在增长。本综述重点关注用于环化反应的双 C(sp<sup>3</sup>)–H 功能化方案,并根据 C(sp<sup>3</sup% 的类型对已发表的论文进行分类3E)–H键。