当前位置:
X-MOL 学术
›
J. Mater. Chem. A
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A functional silicon composite polymer electrolyte with hydrofluoric acid scavenging for quasi-solid-state lithium metal batteries
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2024-07-12 , DOI: 10.1039/d4ta01849d Li Zhao 1 , Li Yang 1 , Yu Cheng 1 , Hong Zhang 1 , Lulu Du 1 , Wei Peng 1 , Ahmed Eissa Abdelmaoula 2 , Lin Xu 1, 3, 4
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2024-07-12 , DOI: 10.1039/d4ta01849d Li Zhao 1 , Li Yang 1 , Yu Cheng 1 , Hong Zhang 1 , Lulu Du 1 , Wei Peng 1 , Ahmed Eissa Abdelmaoula 2 , Lin Xu 1, 3, 4
Affiliation
Lithium metal is considered as one of the most promising anode material candidates for high-energy-density batteries. However, the solid electrolyte interface (SEI) of the lithium metal surface is susceptible to corrosion by hydrofluoric acid (HF) and H2O, which hinders the practical application of lithium metal. In this work, a functional composite polymer electrolyte (FCPE) containing Si nanoparticles can scavenge HF and H2O to protect the SEI from corrosion. The Si nanoparticles in the FCPE react with HF to form SiF4, which reacts with H2O to produce LiF and LixSiOy without generating other harmful by-products. The LiF and LixSiOy are ionic conductors, which are deposited on the surface of lithium metal constructing an SEI layer with high ionic conductivity. The high ionic conductivity of the SEI can contribute to the induction of uniform Li-ion plating/stripping behavior, thereby preventing the growth of lithium dendrites. As a result, a Li‖Li symmetric cell with the FCPE under extreme conditions with a water content of 8078 ppm (VH2O:Vbase electrolyte = 1.0%) can cycle stably for 800 h. These results highlight that the FCPE can remove water impurities to maintain the excellent performance of lithium metal batteries and provide a direction for the development of polymer electrolytes.
中文翻译:
用于准固态锂金属电池的具有氢氟酸清除功能的硅复合聚合物电解质
锂金属被认为是高能量密度电池最有前途的负极材料候选之一。然而,锂金属表面的固体电解质界面(SEI)容易受到氢氟酸(HF)和H 2 O的腐蚀,这阻碍了锂金属的实际应用。在这项工作中,含有Si纳米颗粒的功能复合聚合物电解质(FCPE)可以清除HF和H 2 O,以保护SEI免受腐蚀。 FCPE中的Si纳米颗粒与HF反应生成SiF 4 ,SiF 4 与H 2 O反应生成LiF和Li x SiO y SiO y 是离子导体,它们沉积在锂金属表面,构建具有高离子电导率的SEI层。 SEI 的高离子电导率有助于诱导均匀的锂离子沉积/剥离行为,从而防止锂枝晶的生长。结果表明,采用 FCPE 的 Li‖Li 对称电池在含水量为 8078 ppm(V H2O :V base electrolyte = 1.0%)的极端条件下可以稳定循环 800 次。 H。这些结果凸显FCPE可以去除水杂质以保持锂金属电池的优异性能,并为聚合物电解质的发展提供了方向。
更新日期:2024-07-12
中文翻译:
用于准固态锂金属电池的具有氢氟酸清除功能的硅复合聚合物电解质
锂金属被认为是高能量密度电池最有前途的负极材料候选之一。然而,锂金属表面的固体电解质界面(SEI)容易受到氢氟酸(HF)和H 2 O的腐蚀,这阻碍了锂金属的实际应用。在这项工作中,含有Si纳米颗粒的功能复合聚合物电解质(FCPE)可以清除HF和H 2 O,以保护SEI免受腐蚀。 FCPE中的Si纳米颗粒与HF反应生成SiF 4 ,SiF 4 与H 2 O反应生成LiF和Li x SiO y SiO y 是离子导体,它们沉积在锂金属表面,构建具有高离子电导率的SEI层。 SEI 的高离子电导率有助于诱导均匀的锂离子沉积/剥离行为,从而防止锂枝晶的生长。结果表明,采用 FCPE 的 Li‖Li 对称电池在含水量为 8078 ppm(V H2O :V base electrolyte = 1.0%)的极端条件下可以稳定循环 800 次。 H。这些结果凸显FCPE可以去除水杂质以保持锂金属电池的优异性能,并为聚合物电解质的发展提供了方向。