当前位置:
X-MOL 学术
›
Chem. Soc. Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Navigating the landscape of enzyme design: from molecular simulations to machine learning
Chemical Society Reviews ( IF 40.4 ) Pub Date : 2024-07-11 , DOI: 10.1039/d4cs00196f Jiahui Zhou 1 , Meilan Huang 1
Chemical Society Reviews ( IF 40.4 ) Pub Date : 2024-07-11 , DOI: 10.1039/d4cs00196f Jiahui Zhou 1 , Meilan Huang 1
Affiliation
Global environmental issues and sustainable development call for new technologies for fine chemical synthesis and waste valorization. Biocatalysis has attracted great attention as the alternative to the traditional organic synthesis. However, it is challenging to navigate the vast sequence space to identify those proteins with admirable biocatalytic functions. The recent development of deep-learning based structure prediction methods such as AlphaFold2 reinforced by different computational simulations or multiscale calculations has largely expanded the 3D structure databases and enabled structure-based design. While structure-based approaches shed light on site-specific enzyme engineering, they are not suitable for large-scale screening of potential biocatalysts. Effective utilization of big data using machine learning techniques opens up a new era for accelerated predictions. Here, we review the approaches and applications of structure-based and machine-learning guided enzyme design. We also provide our view on the challenges and perspectives on effectively employing enzyme design approaches integrating traditional molecular simulations and machine learning, and the importance of database construction and algorithm development in attaining predictive ML models to explore the sequence fitness landscape for the design of admirable biocatalysts.
中文翻译:
探索酶设计领域:从分子模拟到机器学习
全球环境问题和可持续发展需要精细化学品合成和废物增值新技术。生物催化作为传统有机合成的替代方法引起了人们的广泛关注。然而,在巨大的序列空间中识别那些具有令人钦佩的生物催化功能的蛋白质是一项挑战。最近开发的基于深度学习的结构预测方法(例如通过不同计算模拟或多尺度计算增强的 AlphaFold2)极大地扩展了 3D 结构数据库并实现了基于结构的设计。虽然基于结构的方法揭示了位点特异性酶工程,但它们不适合大规模筛选潜在的生物催化剂。使用机器学习技术有效利用大数据开辟了加速预测的新时代。在这里,我们回顾了基于结构和机器学习引导的酶设计的方法和应用。我们还提供了关于有效采用结合传统分子模拟和机器学习的酶设计方法的挑战和观点,以及数据库构建和算法开发在获得预测机器学习模型以探索令人钦佩的生物催化剂设计的序列适应性景观方面的重要性。 。
更新日期:2024-07-12
中文翻译:
探索酶设计领域:从分子模拟到机器学习
全球环境问题和可持续发展需要精细化学品合成和废物增值新技术。生物催化作为传统有机合成的替代方法引起了人们的广泛关注。然而,在巨大的序列空间中识别那些具有令人钦佩的生物催化功能的蛋白质是一项挑战。最近开发的基于深度学习的结构预测方法(例如通过不同计算模拟或多尺度计算增强的 AlphaFold2)极大地扩展了 3D 结构数据库并实现了基于结构的设计。虽然基于结构的方法揭示了位点特异性酶工程,但它们不适合大规模筛选潜在的生物催化剂。使用机器学习技术有效利用大数据开辟了加速预测的新时代。在这里,我们回顾了基于结构和机器学习引导的酶设计的方法和应用。我们还提供了关于有效采用结合传统分子模拟和机器学习的酶设计方法的挑战和观点,以及数据库构建和算法开发在获得预测机器学习模型以探索令人钦佩的生物催化剂设计的序列适应性景观方面的重要性。 。