当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D printing of porous hollow nanosphere MoS2@NiS/rGO scaffolds empowering long-cycle sodium-ion batteries
Nano Energy ( IF 16.8 ) Pub Date : 2024-07-01 , DOI: 10.1016/j.nanoen.2024.109953
Tao Han , Zeyu He , Weiqi Kuang , Ji Zhou , Ya-yun Li

Sodium-ion batteries (SIB), as one of the most appealing electrochemical energy storage devices in the field of energy storage, consistently require optimization for both capacity and long-term cycling performance. The amalgamation of diverse material modification techniques with up-and-coming 3D printing technology presents a promising yet relatively underexplored avenue. Herein, we report a composite material, MoS2@NiS/rGO, as the anode material for SIB, achieving high reversible capacity and outstanding long-term cycling performance, surpassing current reported levels. Through carefully designed anode electrode structure and component interface engineering, the material rate capability (with a capacity of 289.5 mAh g−1 at 0.1 A g−1 and 66.8 mAh g−1 at 5 A g−1) and cycling stability (maintaining a capacity of 131.3 mAh g−1 after 800 cycles at 1 A g−1) are significantly enhanced. The reasons for the improvement in electrochemical performance are elucidated through detailed electrochemical analysis. Encouragingly, we showcase the fabrication of a sodium-ion full battery entirely through 3D printing (3DP), achieving an area loading capacity as high as 8.23 mg cm−2 and retaining a capacity of 82.1 mAh g−1 after 240 cycles at 0.1 A g−1. This work underscores the pivotal significance of 3D-printed sodium-ion batteries in advancing the frontier of energy storage technology.

中文翻译:


3D打印多孔空心纳米球MoS2@NiS/rGO支架赋予长循环钠离子电池能力



钠离子电池(SIB)作为储能领域最具吸引力的电化学储能装置之一,始终需要对容量和长期循环性能进行优化。多种材料改性技术与新兴的 3D 打印技术的融合提供了一条前景光明但相对尚未充分开发的途径。在此,我们报道了一种复合材料MoS2@NiS/rGO作为SIB负极材料,实现了高可逆容量和出色的长期循环性能,超越了目前报道的水平。通过精心设计的阳极电极结构和组件界面工程,材料倍率性能(0.1 A g−1 时容量为 289.5 mAh g−1,5 A g−1 时容量为 66.8 mAh g−1)和循环稳定性(保持在 1 A g−1 下循环 800 次后,容量显着增强为 131.3 mAh g−1。通过详细的电化学分析阐明了电化学性能提高的原因。令人鼓舞的是,我们展示了完全通过3D打印(3DP)制造的钠离子全电池,实现了高达8.23 mg cm−2的面积负载容量,并在0.1 A电流下循环240次后保留了82.1 mAh g−1的容量g−1。这项工作强调了3D打印钠离子电池在推进储能技术前沿方面的关键意义。
更新日期:2024-07-01
down
wechat
bug