当前位置:
X-MOL 学术
›
Nano Energy
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Unconventional grain fragmentation creates high-density boundaries for efficient CO2-to-C2+ electro-conversion at ampere-level current density
Nano Energy ( IF 16.8 ) Pub Date : 2024-07-04 , DOI: 10.1016/j.nanoen.2024.109945 Junjie Ding , Qianling Song , Lu Xia , Lujie Ruan , Min Zhang , Chaogang Ban , Jiazhi Meng , Jiangping Ma , Yajie Feng , Yang Wang , Xiaoping Tao , Danmei Yu , Ji-Yan Dai , Liyong Gan , Xiaoyuan Zhou
Nano Energy ( IF 16.8 ) Pub Date : 2024-07-04 , DOI: 10.1016/j.nanoen.2024.109945 Junjie Ding , Qianling Song , Lu Xia , Lujie Ruan , Min Zhang , Chaogang Ban , Jiazhi Meng , Jiangping Ma , Yajie Feng , Yang Wang , Xiaoping Tao , Danmei Yu , Ji-Yan Dai , Liyong Gan , Xiaoyuan Zhou
Electrocatalytic CO2 reduction reaction (CO2 RR) to produce multi-carbon products (C2+ ) is one of the most sustainable manners to achieve net-zero carbon emissions. Among many approaches, enriching grain boundaries (GBs) in copper (Cu) catalysts has been demonstrated to enable enhancement for C2+ production. However, it still lacks effective strategies to controllably synthesize abundant GBs, rendering efficient C2+ production a persistent challenge, especially at ampere-level current density. Herein, we propose a novel strategy, which can achieve unconventional grain fragmentation during thermal annealing and thus create controllable GB densities. The catalyst with the utmost GB density exhibits a peak C2+ faradaic efficiency of ca. 70.0 % in H-type cell and 68.2 % in flow cell; even more impressively, it delivers an ultra-high C2+ current density of 0.768 A cm−2 , outperforming most recently reported results. A combination of in situ spectroscopies and theoretical calculations reveal that the enrichment of GBs yields more active sites for a higher *CO coverage, leading to promotion of the *CO-*CO coupling process and ultimately high C2+ production performance.
中文翻译:
非常规晶粒破碎创造了高密度边界,可在安培级电流密度下实现高效的 CO2 到 C2+ 电转化
电催化二氧化碳还原反应(CO2RR)生产多碳产品(C2+)是实现净零碳排放的最可持续的方式之一。在许多方法中,富集铜 (Cu) 催化剂中的晶界 (GB) 已被证明可以提高 C2+ 的产量。然而,它仍然缺乏有效的策略来可控地合成丰富的 GB,这使得高效的 C2+ 生产成为一个持续的挑战,特别是在安培级电流密度下。在此,我们提出了一种新颖的策略,可以在热退火过程中实现非常规的晶粒破碎,从而产生可控的晶界密度。具有最大 GB 密度的催化剂表现出约 100% 的峰值 C2+ 法拉第效率。 H 型池为 70.0 %,流通池为 68.2 %;更令人印象深刻的是,它提供了 0.768 A cm−2 的超高 C2+ 电流密度,优于最近报道的结果。原位光谱和理论计算相结合表明,GBs的富集产生了更多的活性位点,从而获得了更高的*CO覆盖率,从而促进了*CO-*CO偶联过程并最终实现了高C2+生产性能。
更新日期:2024-07-04
中文翻译:
非常规晶粒破碎创造了高密度边界,可在安培级电流密度下实现高效的 CO2 到 C2+ 电转化
电催化二氧化碳还原反应(CO2RR)生产多碳产品(C2+)是实现净零碳排放的最可持续的方式之一。在许多方法中,富集铜 (Cu) 催化剂中的晶界 (GB) 已被证明可以提高 C2+ 的产量。然而,它仍然缺乏有效的策略来可控地合成丰富的 GB,这使得高效的 C2+ 生产成为一个持续的挑战,特别是在安培级电流密度下。在此,我们提出了一种新颖的策略,可以在热退火过程中实现非常规的晶粒破碎,从而产生可控的晶界密度。具有最大 GB 密度的催化剂表现出约 100% 的峰值 C2+ 法拉第效率。 H 型池为 70.0 %,流通池为 68.2 %;更令人印象深刻的是,它提供了 0.768 A cm−2 的超高 C2+ 电流密度,优于最近报道的结果。原位光谱和理论计算相结合表明,GBs的富集产生了更多的活性位点,从而获得了更高的*CO覆盖率,从而促进了*CO-*CO偶联过程并最终实现了高C2+生产性能。