当前位置: X-MOL 学术Nanophotonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simultaneous thermal camouflage and radiative cooling for ultrahigh-temperature objects using inversely designed hierarchical metamaterial
Nanophotonics ( IF 6.5 ) Pub Date : 2024-07-10 , DOI: 10.1515/nanoph-2024-0193
Saichao Dang 1, 2 , Wei Yang 1 , Jialei Zhang 1 , Qiwen Zhan 3 , Hong Ye 1
Affiliation  

Sophisticated infrared detection technology, operating through atmospheric transmission windows (usually between 3 and 5 μm and 8–13 μm), can detect an object by capturing its emitted thermal radiation, posing a threat to the survival of targeted objects. As per Wien’s displacement law, the shift of peak wavelength towards shorter wavelengths as blackbody temperature rises, underscores the significance of the 3–5 μm range for ultra-high temperature objects (e.g., at 400 °C), emphasizing the crucial need to control this radiation for the objects’ viability. Additionally, effective heat management is essential for ensuring the consistent operation of these ultrahot entities. In this study, based on a database with high-temperature resist materials, we introduced a material-informatics-based framework aimed at achieving the inverse design of simultaneous thermal camouflage (low emittance in the 3–5 μm range) and radiative cooling (high emittance in the non-atmospheric window 5–8 μm range) tailored for ultrahigh-temperature objects. Utilizing the transfer matrix method to calculate spectral properties and employing the particle swarm optimization algorithm, two optimized multilayer structures with desired spectral characteristics are obtained. The resulted structures demonstrate effective infrared camouflage at temperatures up to 250 °C and 500 °C, achieving reductions of 86.7 % and 63.7 % in the infrared signal, respectively. At equivalent heating power densities applied to the structure and aluminum, structure 1 demonstrates a temperature reduction of 29.4 °C at 0.75 W/cm2, while structure 2 attains a temperature reduction of 57.5 °C at 1.50 W/cm2 compared to aluminum, showcasing enhanced radiative cooling effects. This approach paves the way for attenuating infrared signals from ultrahigh-temperature objects and effectively managing their thermal conditions.

中文翻译:


使用逆向设计的分层超材料对超高温物体同时进行热伪装和辐射冷却



复杂的红外探测技术通过大气传输窗口(通常在 3 至 5 μm 和 8-13 μm 之间)运行,可以通过捕获物体发射的热辐射来探测物体,从而对目标物体的生存构成威胁。根据维恩位移定律,随着黑体温度升高,峰值波长向较短波长移动,强调了 3-5 μm 范围对于超高温物体(例如 400 °C)的重要性,强调了控制的关键需要这种辐射对于物体的生存能力。此外,有效的热管理对于确保这些超热实体的一致运行至关重要。在这项研究中,基于高温抗蚀剂材料数据库,我们引入了一种基于材料信息学的框架,旨在实现同时热伪装(3-5μm范围内的低发射率)和辐射冷却(高发射率)的逆向设计。非大气窗口5-8μm范围内的发射率)专为超高温物体量身定制。利用传递矩阵方法计算光谱特性,并采用粒子群优化算法,得到了两种具有所需光谱特性的优化多层结构。由此产生的结构在高达 250 °C 和 500 °C 的温度下表现出有效的红外伪装,红外信号分别减少了 86.7% 和 63.7%。在应用于结构和铝的相同加热功率密度下,与铝相比,结构 1 在 0.75 W/cm2 时温度降低了 29.4 °C,而结构 2 在 1.50 W/cm2 时温度降低了 57.5 °C,展示了增强的性能辐射冷却效应。 这种方法为衰减超高温物体的红外信号并有效管理其热状况铺平了道路。
更新日期:2024-07-10
down
wechat
bug