Nature ( IF 50.5 ) Pub Date : 2024-07-10 , DOI: 10.1038/s41586-024-07658-9 Nerea Abrego 1, 2 , Brendan Furneaux 1 , Bess Hardwick 2 , Panu Somervuo 3 , Isabella Palorinne 2 , Carlos A Aguilar-Trigueros 1 , Nigel R Andrew 4, 5 , Ulyana V Babiy 6 , Tan Bao 7 , Gisela Bazzano 8 , Svetlana N Bondarchuk 9 , Timothy C Bonebrake 10 , Georgina L Brennan 11 , Syndonia Bret-Harte 12 , Claus Bässler 13, 14, 15 , Luciano Cagnolo 16 , Erin K Cameron 17 , Elodie Chapurlat 18 , Simon Creer 19 , Luigi P D'Acqui 20 , Natasha de Vere 21 , Marie-Laure Desprez-Loustau 22 , Michel A K Dongmo 10, 23 , Ida B Dyrholm Jacobsen 24 , Brian L Fisher 25, 26 , Miguel Flores de Jesus 27 , Gregory S Gilbert 28 , Gareth W Griffith 29 , Anna A Gritsuk 9 , Andrin Gross 30 , Håkan Grudd 31 , Panu Halme 1 , Rachid Hanna 32 , Jannik Hansen 33 , Lars Holst Hansen 33 , Apollon D M T Hegbe 34 , Sarah Hill 4 , Ian D Hogg 35, 36, 37 , Jenni Hultman 38, 39 , Kevin D Hyde 40 , Nicole A Hynson 41 , Natalia Ivanova 42, 43 , Petteri Karisto 44, 45 , Deirdre Kerdraon 18 , Anastasia Knorre 46, 47 , Irmgard Krisai-Greilhuber 48 , Juri Kurhinen 3 , Masha Kuzmina 42 , Nicolas Lecomte 49 , Erin Lecomte 49 , Viviana Loaiza 50 , Erik Lundin 31 , Alexander Meire 31 , Armin Mešić 51 , Otto Miettinen 52 , Norman Monkhouse 42 , Peter Mortimer 53 , Jörg Müller 14, 54 , R Henrik Nilsson 55 , Puani Yannick C Nonti 34 , Jenni Nordén 56 , Björn Nordén 56 , Veera Norros 57 , Claudia Paz 58, 59 , Petri Pellikka 60, 61, 62 , Danilo Pereira 44, 63 , Geoff Petch 64 , Juha-Matti Pitkänen 39 , Flavius Popa 65 , Caitlin Potter 29 , Jenna Purhonen 1, 66 , Sanna Pätsi 67 , Abdullah Rafiq 19 , Dimby Raharinjanahary 26 , Niklas Rakos 31 , Achala R Rathnayaka 40, 68 , Katrine Raundrup 24 , Yury A Rebriev 69 , Jouko Rikkinen 3, 52 , Hanna M K Rogers 18 , Andrey Rogovsky 46 , Yuri Rozhkov 70 , Kadri Runnel 71, 72 , Annika Saarto 67 , Anton Savchenko 72 , Markus Schlegel 30 , Niels Martin Schmidt 33, 73 , Sebastian Seibold 74, 75 , Carsten Skjøth 64, 76 , Elisa Stengel 77 , Svetlana V Sutyrina 9 , Ilkka Syvänperä 78 , Leho Tedersoo 71, 79 , Jebidiah Timm 12 , Laura Tipton 80 , Hirokazu Toju 81, 82 , Maria Uscka-Perzanowska 18 , Michelle van der Bank 83 , F Herman van der Bank 83 , Bryan Vandenbrink 35 , Stefano Ventura 20 , Solvi R Vignisson 84 , Xiaoyang Wang 85 , Wolfgang W Weisser 75 , Subodini N Wijesinghe 40, 68 , S Joseph Wright 86 , Chunyan Yang 85 , Nourou S Yorou 34 , Amanda Young 12 , Douglas W Yu 85, 87, 88 , Evgeny V Zakharov 36, 42 , Paul D N Hebert 36, 42 , Tomas Roslin 3, 18 , Otso Ovaskainen 1, 3, 89
Fungi are among the most diverse and ecologically important kingdoms in life. However, the distributional ranges of fungi remain largely unknown as do the ecological mechanisms that shape their distributions1,2. To provide an integrated view of the spatial and seasonal dynamics of fungi, we implemented a globally distributed standardized aerial sampling of fungal spores3. The vast majority of operational taxonomic units were detected within only one climatic zone, and the spatiotemporal patterns of species richness and community composition were mostly explained by annual mean air temperature. Tropical regions hosted the highest fungal diversity except for lichenized, ericoid mycorrhizal and ectomycorrhizal fungi, which reached their peak diversity in temperate regions. The sensitivity in climatic responses was associated with phylogenetic relatedness, suggesting that large-scale distributions of some fungal groups are partially constrained by their ancestral niche. There was a strong phylogenetic signal in seasonal sensitivity, suggesting that some groups of fungi have retained their ancestral trait of sporulating for only a short period. Overall, our results show that the hyperdiverse kingdom of fungi follows globally highly predictable spatial and temporal dynamics, with seasonality in both species richness and community composition increasing with latitude. Our study reports patterns resembling those described for other major groups of organisms, thus making a major contribution to the long-standing debate on whether organisms with a microbial lifestyle follow the global biodiversity paradigms known for macroorganisms4,5.
中文翻译:
空气中的 DNA 揭示了真菌的可预测空间和季节动态
真菌是生命中最多样化、对生态最重要的王国之一。然而,真菌的分布范围仍然很大程度上未知,影响其分布的生态机制也是如此1,2 。为了提供真菌空间和季节动态的综合视图,我们对真菌孢子进行了全球分布的标准化空中采样3 。绝大多数可操作的分类单元仅在一个气候区内检测到,物种丰富度和群落组成的时空模式主要由年平均气温来解释。热带地区的真菌多样性最高,但地衣真菌、环状菌根真菌和外生菌根真菌在温带地区达到了最高多样性。气候反应的敏感性与系统发育相关性相关,这表明一些真菌类群的大规模分布部分受到其祖先生态位的限制。季节性敏感性存在强烈的系统发育信号,表明某些真菌类群仅在短时间内保留了其孢子形成的祖先特征。总的来说,我们的结果表明,真菌的高度多样化王国遵循全球高度可预测的时空动态,物种丰富度和群落组成的季节性随着纬度的增加而增加。我们的研究报告的模式与其他主要生物体类群所描述的模式类似,从而为关于具有微生物生活方式的生物体是否遵循以宏观生物体闻名的全球生物多样性范式的长期争论做出了重大贡献4,5 。