当前位置:
X-MOL 学术
›
ACS Appl. Nano Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Encapsulating Selenium into Biomass-Derived Nitrogen-Doped Porous Carbon As the Cathode for Sodium–Selenium and Potassium–Selenium Batteries
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2024-07-09 , DOI: 10.1021/acsanm.4c02601
Qiuyang Ma 1, 2 , Sihan Chen 1 , Yue Li 1 , Zicong Yan 3 , Yuxi Liu 2 , Zhen Fang 1, 4
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2024-07-09 , DOI: 10.1021/acsanm.4c02601
Qiuyang Ma 1, 2 , Sihan Chen 1 , Yue Li 1 , Zicong Yan 3 , Yuxi Liu 2 , Zhen Fang 1, 4
Affiliation
![]() |
Developing a host that enhances active selenium utilization and mitigates the polyselenide shuttle effect is crucial for both sodium–selenium (Na–Se) and potassium–selenium (K–Se) storage systems. Herein, a biomass-derived three-dimensional nitrogen-doped cross-linked porous carbon (3D-N-CPC) is designed as a Se host. The high specific surface area of 3D-N-CPC ensures the efficient utilization of Se/Na2Se/K2Se. The abundant micromesoporous structures can not only serve as physical barriers for storing small selenium molecules and confining polyselenides but also effectively alleviate the volume expansion during cycling. In addition, in situ biomass-derived N-doped active sites can improve the electrical conductivity and accelerate the polyselenide conversion kinetics. By combining these advantages, the 3D-N-CPC/Se electrode exhibits a high reversible capacity of 393 mA h g–1 after 2000 cycles at 2C and a superior rate performance of 328 mA h g–1 at 10C for Na–Se batteries. Moreover, the 3D-N-CPC/Se electrode demonstrates performance in Na–Se batteries across a wide temperature range (−10 to 50 °C). In K–Se batteries, the 3D-N-CPC/Se electrode maintains a capacity of 476 mA h g–1 after 200 cycles at 0.2C. This work could pave the way for the development of a biomass-derived conductive carbon matrix with porous structure in advanced selenium-based battery systems.
中文翻译:
将硒封装到生物质衍生的氮掺杂多孔碳中作为钠硒和钾硒电池的阴极
开发一种增强硒的主动利用率并减轻多硒化物穿梭效应的宿主对于钠硒(Na-Se)和钾硒(K-Se)存储系统至关重要。在此,设计了一种生物质衍生的三维氮掺杂交联多孔碳(3D-N-CPC)作为Se主体。 3D-N-CPC的高比表面积保证了Se/Na 2 Se/K 2 Se的高效利用。丰富的微介孔结构不仅可以作为存储小硒分子和限制多硒化物的物理屏障,而且可以有效缓解循环过程中的体积膨胀。此外,原位生物质衍生的氮掺杂活性位点可以提高电导率并加速多硒化物转化动力学。通过结合这些优点,3D-N-CPC/Se电极在2C下循环2000次后表现出393 mAh g –1 的高可逆容量和328 mAh g –1 的容量。这项工作可以为先进硒基电池系统中具有多孔结构的生物质衍生导电碳基质的开发铺平道路。
更新日期:2024-07-09
中文翻译:

将硒封装到生物质衍生的氮掺杂多孔碳中作为钠硒和钾硒电池的阴极
开发一种增强硒的主动利用率并减轻多硒化物穿梭效应的宿主对于钠硒(Na-Se)和钾硒(K-Se)存储系统至关重要。在此,设计了一种生物质衍生的三维氮掺杂交联多孔碳(3D-N-CPC)作为Se主体。 3D-N-CPC的高比表面积保证了Se/Na 2 Se/K 2 Se的高效利用。丰富的微介孔结构不仅可以作为存储小硒分子和限制多硒化物的物理屏障,而且可以有效缓解循环过程中的体积膨胀。此外,原位生物质衍生的氮掺杂活性位点可以提高电导率并加速多硒化物转化动力学。通过结合这些优点,3D-N-CPC/Se电极在2C下循环2000次后表现出393 mAh g –1 的高可逆容量和328 mAh g –1 的容量。这项工作可以为先进硒基电池系统中具有多孔结构的生物质衍生导电碳基质的开发铺平道路。