当前位置:
X-MOL 学术
›
IEEE Trans. Pattern Anal. Mach. Intell.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Non-Serial Quantization-Aware Deep Optics for Snapshot Hyperspectral Imaging
IEEE Transactions on Pattern Analysis and Machine Intelligence ( IF 20.8 ) Pub Date : 2024-07-09 , DOI: 10.1109/tpami.2024.3425512 Lizhi Wang 1 , Lingen Li 2 , Weitao Song 3 , Lei Zhang 2 , Zhiwei Xiong 4 , Hua Huang 1
IEEE Transactions on Pattern Analysis and Machine Intelligence ( IF 20.8 ) Pub Date : 2024-07-09 , DOI: 10.1109/tpami.2024.3425512 Lizhi Wang 1 , Lingen Li 2 , Weitao Song 3 , Lei Zhang 2 , Zhiwei Xiong 4 , Hua Huang 1
Affiliation
Deep optics has been endeavoring to capture hyperspectral images of dynamic scenes, where the optical encoder plays an essential role in deciding the imaging performance. Our key insight is that the optical encoder of a deep optics system is expected to keep fabrication-friendliness and decoder-friendliness, to be faithfully realized in the implementation phase and fully interacted with the decoder in the design phase, respectively. In this paper, we propose the non-serial quantization-aware deep optics (NSQDO), which consists of the fabrication-friendly quantization-aware model (QAM) and the decoder-friendly non-serial manner (NSM). The QAM integrates the quantization process into the optimization and adaptively adjusts the physical height of each quantization level, reducing the deviation of the physical encoder from the numerical simulation through the awareness of and adaptation to the quantization operation of the DOE physical structure. The NSM bridges the encoder and the decoder with full interaction through bidirectional hint connections and flexibilize the connections with a gating mechanism, boosting the power of joint optimization in deep optics. The proposed NSQDO improves the fabrication-friendliness and decoder-friendliness of the encoder and develops the deep optics framework to be more practical and powerful. Extensive synthetic simulation and real hardware experiments demonstrate the superior performance of the proposed method.
中文翻译:
用于快照高光谱成像的非序列量化感知深层光学
Deep Optics 一直在努力捕捉动态场景的高光谱图像,其中光学编码器在决定成像性能方面起着至关重要的作用。我们的主要见解是,深度光学系统的光学编码器应保持制造友好性和解码器友好性,分别在实现阶段忠实实现,并在设计阶段与解码器完全交互。在本文中,我们提出了非串行量化感知深度光学 (NSQDO),它由制造友好的量化感知模型 (QAM) 和解码器友好的非串行方式 (NSM) 组成。QAM 将量化过程集成到优化中,并自适应地调整每个量化级别的物理高度,通过感知和适应 DOE 物理结构的量化操作,减少物理编码器与数值模拟的偏差。NSM 通过双向提示连接将编码器和解码器完全交互连接起来,并通过门控机制灵活连接,从而增强深度光学联合优化的能力。所提出的 NSQDO 提高了编码器的制造友好性和解码器友好性,并将深度光学框架发展得更加实用和强大。广泛的合成仿真和真实的硬件实验证明了所提方法的优越性能。
更新日期:2024-07-09
中文翻译:
用于快照高光谱成像的非序列量化感知深层光学
Deep Optics 一直在努力捕捉动态场景的高光谱图像,其中光学编码器在决定成像性能方面起着至关重要的作用。我们的主要见解是,深度光学系统的光学编码器应保持制造友好性和解码器友好性,分别在实现阶段忠实实现,并在设计阶段与解码器完全交互。在本文中,我们提出了非串行量化感知深度光学 (NSQDO),它由制造友好的量化感知模型 (QAM) 和解码器友好的非串行方式 (NSM) 组成。QAM 将量化过程集成到优化中,并自适应地调整每个量化级别的物理高度,通过感知和适应 DOE 物理结构的量化操作,减少物理编码器与数值模拟的偏差。NSM 通过双向提示连接将编码器和解码器完全交互连接起来,并通过门控机制灵活连接,从而增强深度光学联合优化的能力。所提出的 NSQDO 提高了编码器的制造友好性和解码器友好性,并将深度光学框架发展得更加实用和强大。广泛的合成仿真和真实的硬件实验证明了所提方法的优越性能。