Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Characterizing phenotypes and clinical and health utilization associations of young people with chronic pain: latent class analysis using the electronic Persistent Pain Outcomes Collaboration database.
Pain ( IF 5.9 ) Pub Date : 2024-07-09 , DOI: 10.1097/j.pain.0000000000003326 Helen Slater 1 , Robert Waller 1 , Andrew M Briggs 1 , Susan M Lord 2, 3, 4 , Anne J Smith 1
Pain ( IF 5.9 ) Pub Date : 2024-07-09 , DOI: 10.1097/j.pain.0000000000003326 Helen Slater 1 , Robert Waller 1 , Andrew M Briggs 1 , Susan M Lord 2, 3, 4 , Anne J Smith 1
Affiliation
Using the Australiasian electronic Persistent Pain Outcomes Collaboration, a binational pain registry collecting standardized clinical data from paediatric ePPOC (PaedsePPOC) and adult pain services (AdultePPOC), we explored and characterized nationally representative chronic pain phenotypes and associations with clinical and sociodemographic factors, health care utilization, and medicine use of young people. Young people ≥15.0 and <25.0 years captured in PaedePPOC and AdultePPOC Australian data registry were included. Data from 68 adult and 12 paediatric pain services for a 5-year period January 2018 to December 2022 (first episode, including treatment information) were analysed. Unsupervised latent class analysis was applied to explore the existence of distinct pain phenotypes, with separate models for both services. A 3-phenotype model was selected from both paediatric and adult ePPOC data, with 693 and 3518 young people included, respectively (at least one valid indicator variable). Indicator variables for paediatric models were as follows: pain severity, functional disability (quasisurrogate "pain interference"), pain count, pain duration, pain-related worry (quasisurrogate "catastrophizing"), and emotional functioning; and, for adult models: pain severity, pain interference, pain catastrophizing, emotional functioning, and pain self-efficacy. From both services, 3 similar phenotypes emerged ("low," "moderate," "high"), characterized by an increasing symptom-severity gradient in multidimensional pain-related variables, showing meaningful differences across clinical and sociodemographic factors, health service utilization, and medicines use. Derived phenotypes point to the need for novel care models that differentially respond to the needs of distinct groups of young people, providing timely, targeted, age-appropriate care. To effectively scale such care, digital technologies can be leveraged to augment phenotype-informed clinical care.
中文翻译:
表征患有慢性疼痛的年轻人的表型以及临床和健康利用关联:使用电子持续性疼痛结果协作数据库进行潜在类别分析。
使用澳大利亚电子持续性疼痛结果协作,一个从儿科 ePPOC (PaedsePPOC) 和成人疼痛服务 (AdultePPOC) 收集标准化临床数据的两国疼痛登记处,我们探索并表征了全国代表性的慢性疼痛表型以及与临床和社会人口学因素、医疗保健利用和药物使用的关联年轻人。包括 PaedePPOC 和 AdultePPOC 澳大利亚数据登记处捕获的年轻人 ≥15.0 岁和 <25.0 岁。分析了 2018 年 1 月至 2022 年 12 月的 5 年期间 68 个成人和 12 个儿科疼痛服务的数据(第一次发作,包括治疗信息)。应用无监督潜在类别分析来探索不同疼痛表型的存在,两种服务都有单独的模型。从儿科和成人 ePPOC 数据中选择一个 3 表型模型,分别包括 693 名和 3518 名年轻人 (至少一个有效的指标变量)。儿科模型的指标变量如下:疼痛严重程度、功能障碍(准替代“疼痛干扰”)、疼痛计数、疼痛持续时间、与疼痛相关的担忧(准替代“灾难化”)和情绪功能;并且,对于成人模型:疼痛严重程度、疼痛干扰、疼痛灾难化、情绪功能和疼痛自我效能感。从这两种服务中,出现了 3 种相似的表型 (“低”、“中”、“高”),其特征是多维疼痛相关变量的症状严重程度梯度增加,在临床和社会人口学因素、卫生服务利用和药物使用方面显示出有意义的差异。 衍生的表型表明需要新的护理模式,这些模式可以不同地响应不同年轻人群体的需求,提供及时、有针对性、适合年龄的护理。为了有效地扩大此类护理的规模,可以利用数字技术来增强基于表型的临床护理。
更新日期:2024-07-09
中文翻译:
表征患有慢性疼痛的年轻人的表型以及临床和健康利用关联:使用电子持续性疼痛结果协作数据库进行潜在类别分析。
使用澳大利亚电子持续性疼痛结果协作,一个从儿科 ePPOC (PaedsePPOC) 和成人疼痛服务 (AdultePPOC) 收集标准化临床数据的两国疼痛登记处,我们探索并表征了全国代表性的慢性疼痛表型以及与临床和社会人口学因素、医疗保健利用和药物使用的关联年轻人。包括 PaedePPOC 和 AdultePPOC 澳大利亚数据登记处捕获的年轻人 ≥15.0 岁和 <25.0 岁。分析了 2018 年 1 月至 2022 年 12 月的 5 年期间 68 个成人和 12 个儿科疼痛服务的数据(第一次发作,包括治疗信息)。应用无监督潜在类别分析来探索不同疼痛表型的存在,两种服务都有单独的模型。从儿科和成人 ePPOC 数据中选择一个 3 表型模型,分别包括 693 名和 3518 名年轻人 (至少一个有效的指标变量)。儿科模型的指标变量如下:疼痛严重程度、功能障碍(准替代“疼痛干扰”)、疼痛计数、疼痛持续时间、与疼痛相关的担忧(准替代“灾难化”)和情绪功能;并且,对于成人模型:疼痛严重程度、疼痛干扰、疼痛灾难化、情绪功能和疼痛自我效能感。从这两种服务中,出现了 3 种相似的表型 (“低”、“中”、“高”),其特征是多维疼痛相关变量的症状严重程度梯度增加,在临床和社会人口学因素、卫生服务利用和药物使用方面显示出有意义的差异。 衍生的表型表明需要新的护理模式,这些模式可以不同地响应不同年轻人群体的需求,提供及时、有针对性、适合年龄的护理。为了有效地扩大此类护理的规模,可以利用数字技术来增强基于表型的临床护理。