当前位置:
X-MOL 学术
›
Phys. Rev. X
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Raman Sideband Cooling of Molecules in an Optical Tweezer Array to the 3D Motional Ground State
Physical Review X ( IF 11.6 ) Pub Date : 2024-07-08 , DOI: 10.1103/physrevx.14.031002 Yicheng Bao 1, 2 , Scarlett S. Yu 1, 2 , Jiaqi You 1, 2 , Loïc Anderegg 1, 2 , Eunmi Chae 3 , Wolfgang Ketterle 1, 2 , Kang-Kuen Ni 1, 1, 2 , John M. Doyle 1, 2
Physical Review X ( IF 11.6 ) Pub Date : 2024-07-08 , DOI: 10.1103/physrevx.14.031002 Yicheng Bao 1, 2 , Scarlett S. Yu 1, 2 , Jiaqi You 1, 2 , Loïc Anderegg 1, 2 , Eunmi Chae 3 , Wolfgang Ketterle 1, 2 , Kang-Kuen Ni 1, 1, 2 , John M. Doyle 1, 2
Affiliation
Ultracold polar molecules are promising for quantum information processing and searches for physics beyond the standard model. Laser cooling to ultracold temperatures is an established technique for trapped diatomic and triatomic molecules. Further cooling of the molecules to near the motional ground state is crucial for reducing various dephasings in quantum and precision applications. In this work, we demonstrate Raman sideband cooling (RSC) of CaF molecules in optical tweezers to near their motional ground state, with average motional occupation quantum numbers of , (radial directions), and (axial direction), and a 3-D motional-ground-state probability of of the molecules that survive the RSC. This process paves the way to increase molecular coherence times in optical tweezers for robust quantum computation and simulation applications.
中文翻译:
光镊阵列中的分子拉曼边带冷却至 3D 运动基态
超冷极性分子有望用于量子信息处理和超越标准模型的物理探索。激光冷却至超冷温度是捕获双原子和三原子分子的成熟技术。将分子进一步冷却至接近运动基态对于减少量子和精密应用中的各种相移至关重要。在这项工作中,我们演示了光镊中 CaF 分子的拉曼边带冷却 (RSC) 至接近其运动基态,平均运动占据量子数为 、 (径向方向) )和 (轴向),以及在 RSC 中存活的分子的 3-D 运动基态概率 。这一过程为增加光镊中的分子相干时间以实现稳健的量子计算和模拟应用铺平了道路。
更新日期:2024-07-09
中文翻译:
光镊阵列中的分子拉曼边带冷却至 3D 运动基态
超冷极性分子有望用于量子信息处理和超越标准模型的物理探索。激光冷却至超冷温度是捕获双原子和三原子分子的成熟技术。将分子进一步冷却至接近运动基态对于减少量子和精密应用中的各种相移至关重要。在这项工作中,我们演示了光镊中 CaF 分子的拉曼边带冷却 (RSC) 至接近其运动基态,平均运动占据量子数为 、 (径向方向) )和 (轴向),以及在 RSC 中存活的分子的 3-D 运动基态概率 。这一过程为增加光镊中的分子相干时间以实现稳健的量子计算和模拟应用铺平了道路。