当前位置:
X-MOL 学术
›
Sep. Purif. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Bifunctional sulfur-doped biochar for efficient removal of tetracycline and resistant bacteria via adsorption and peroxydisulfate activation
Separation and Purification Technology ( IF 8.1 ) Pub Date : 2024-07-06 , DOI: 10.1016/j.seppur.2024.128728 Lin Wang , Yonglin Zhao , Miaomiao Sun , Yueping Zheng , Hanrong Fan , Shaolong Wang , Chengyan Jiang
Separation and Purification Technology ( IF 8.1 ) Pub Date : 2024-07-06 , DOI: 10.1016/j.seppur.2024.128728 Lin Wang , Yonglin Zhao , Miaomiao Sun , Yueping Zheng , Hanrong Fan , Shaolong Wang , Chengyan Jiang
Sulfur-doped biochar (SBC) was prepared for the efficient removal of tetracycline (TC) and TC-resistant bacteria via the dual functions of adsorption and peroxydisulfate (PDS) activation. One of the prepared SBC/PDS systems was found to remove 93.89 % of TC with 3.11 times the removal efficiency of the system without sulfur doping (i.e., BC/PDS). The SBC/PDS system inactivated approximately 10 CFU/mL of the TC-resistant bacterium within 90 min, corresponding to 1.14 times the inactivation efficiency of the BC/PDS system. The introduction of sulfur improved the adsorption rate by 3.09 times, likely due to pore filling and hydrogen bonding. The PDS activation of the SBC/PDS system primarily removed TC and through nonradical oxidation dominated by O generation, and the main active sites were vacancy defects. TC adsorption may be the key step for determining the reaction rate of nonradical oxidation. A high correlation (R = 0.98) was observed between the adsorption capacity and degradation rate constant of different activator systems, which indicated a synergistic effect between the adsorption and oxidation of TC. This study provides a theoretical basis for the development of advanced oxidation processes utilizing bifunctional materials with a nonradical oxidation pathway for the removal of antibiotics and antibiotic-resistant bacteria.
中文翻译:
双功能硫掺杂生物炭通过吸附和过二硫酸盐活化有效去除四环素和耐药细菌
制备掺硫生物炭(SBC),通过吸附和过二硫酸盐(PDS)活化的双重功能,有效去除四环素(TC)和TC耐药细菌。发现其中一种制备的 SBC/PDS 系统可以去除 93.89% 的 TC,去除效率是未掺杂硫的系统(即 BC/PDS)的 3.11 倍。 SBC/PDS 系统在 90 分钟内灭活了约 10 CFU/mL 的 TC 耐药细菌,相当于 BC/PDS 系统灭活效率的 1.14 倍。硫的引入将吸附率提高了 3.09 倍,这可能是由于孔隙填充和氢键作用。 SBC/PDS体系的PDS活化主要通过以O生成为主的非自由基氧化去除TC,主要活性位点为空位缺陷。 TC吸附可能是决定非自由基氧化反应速率的关键步骤。不同活化剂体系的吸附容量和降解速率常数之间存在高度相关性(R = 0.98),这表明TC的吸附和氧化之间存在协同效应。该研究为利用具有非自由基氧化途径的双功能材料开发高级氧化工艺来去除抗生素和抗生素耐药细菌提供了理论基础。
更新日期:2024-07-06
中文翻译:
双功能硫掺杂生物炭通过吸附和过二硫酸盐活化有效去除四环素和耐药细菌
制备掺硫生物炭(SBC),通过吸附和过二硫酸盐(PDS)活化的双重功能,有效去除四环素(TC)和TC耐药细菌。发现其中一种制备的 SBC/PDS 系统可以去除 93.89% 的 TC,去除效率是未掺杂硫的系统(即 BC/PDS)的 3.11 倍。 SBC/PDS 系统在 90 分钟内灭活了约 10 CFU/mL 的 TC 耐药细菌,相当于 BC/PDS 系统灭活效率的 1.14 倍。硫的引入将吸附率提高了 3.09 倍,这可能是由于孔隙填充和氢键作用。 SBC/PDS体系的PDS活化主要通过以O生成为主的非自由基氧化去除TC,主要活性位点为空位缺陷。 TC吸附可能是决定非自由基氧化反应速率的关键步骤。不同活化剂体系的吸附容量和降解速率常数之间存在高度相关性(R = 0.98),这表明TC的吸附和氧化之间存在协同效应。该研究为利用具有非自由基氧化途径的双功能材料开发高级氧化工艺来去除抗生素和抗生素耐药细菌提供了理论基础。