当前位置:
X-MOL 学术
›
Finance Research Letters
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Can the ‘good-bad’ volatility and the leverage effect improve the prediction of cryptocurrency volatility?—Evidence from SHARV-MGJR model
Finance Research Letters ( IF 7.4 ) Pub Date : 2024-07-02 , DOI: 10.1016/j.frl.2024.105757 Zhenlong Chen , Junjie Liu , Xiaozhen Hao
Finance Research Letters ( IF 7.4 ) Pub Date : 2024-07-02 , DOI: 10.1016/j.frl.2024.105757 Zhenlong Chen , Junjie Liu , Xiaozhen Hao
In recent years, cryptocurrencies have gained investor attention for their extreme volatility, but this has introduced financial risks that require accurate prediction models. Therefore, we propose the SHARV-MGJR model, which incorporates both ‘good-bad’ volatility, leverage effects, and current return information to enhance the accuracy of cryptocurrency market volatility predictions. Empirical results demonstrate that compared to GARCH-type models, the SHARV-MGJR model exhibits superior predictive accuracy in forecasting cryptocurrency market volatility. Furthermore, robustness tests confirm the superiority of the SHARV-MGJR model in predicting cryptocurrency market volatility.
中文翻译:
“好坏”波动性和杠杆效应能否改善对加密货币波动性的预测?——来自 SHARV-MGJR 模型的证据
近年来,加密货币因其极端的波动性而受到投资者的关注,但这也带来了需要准确预测模型的金融风险。因此,我们提出SHARV-MGJR模型,该模型结合了“好坏”波动性、杠杆效应和当前回报信息,以提高加密货币市场波动性预测的准确性。实证结果表明,与 GARCH 类型模型相比,SHARV-MGJR 模型在预测加密货币市场波动方面表现出优异的预测准确性。此外,稳健性测试证实了 SHARV-MGJR 模型在预测加密货币市场波动方面的优越性。
更新日期:2024-07-02
中文翻译:
“好坏”波动性和杠杆效应能否改善对加密货币波动性的预测?——来自 SHARV-MGJR 模型的证据
近年来,加密货币因其极端的波动性而受到投资者的关注,但这也带来了需要准确预测模型的金融风险。因此,我们提出SHARV-MGJR模型,该模型结合了“好坏”波动性、杠杆效应和当前回报信息,以提高加密货币市场波动性预测的准确性。实证结果表明,与 GARCH 类型模型相比,SHARV-MGJR 模型在预测加密货币市场波动方面表现出优异的预测准确性。此外,稳健性测试证实了 SHARV-MGJR 模型在预测加密货币市场波动方面的优越性。