当前位置:
X-MOL 学术
›
For. Ecosyst.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Leading directions and effective distance of larch offspring dispersal at the upper treeline in the Northern and Polar Urals, Russia
Forest Ecosystems ( IF 3.8 ) Pub Date : 2024-06-20 , DOI: 10.1016/j.fecs.2024.100218 P.A. Moiseev , V.L. Semerikov , T.V. Semerikova , D.S. Balakin , I.B. Vorobiev , S.O. Viuykhin
Forest Ecosystems ( IF 3.8 ) Pub Date : 2024-06-20 , DOI: 10.1016/j.fecs.2024.100218 P.A. Moiseev , V.L. Semerikov , T.V. Semerikova , D.S. Balakin , I.B. Vorobiev , S.O. Viuykhin
Climate has changed sufficiently over the last 150 years and forced out upper treeline advance at the most studied sites around the world. The rate of advance has been extremely variable – from tens to hundreds meters in altitude. This is because the degree at which tree frontal populations respond to climate change depends on the complex interaction of biological and physical factors. The resulting stand pattern is the consequence of the interaction between dispersal and survival functions. A few publications have addressed the question of how this pattern is generated. In order to understand how the spatial structure of tree stands was formed at the upper limit of their distribution in the Ural Mountains, we assessed the distance and direction of dispersal of offspring from maternal individuals. We found that in frontal Ledeb. populations, ‘effective’ dispersal of offspring ranges from 3 to 758 m (with a median of 20–33 m in open forest and 219 m in single-tree tundra in the Polar Urals and 107 m in open forest in the Northern Urals). We revealed that most of the offspring effectively dispersed not only in the direction of the prevailing winds, but also in the opposite direction up the slope, and the distance can reach 500–760 m. The data obtained can be used to develop an individual-based model which is capable of simulating in detail the dynamics of tree stands at the upper limit of their growth and reliably predicting the future position and pattern of treeline ecotone as growth conditions continue to improve in the face of observed climate change.
中文翻译:
俄罗斯乌拉尔北部和极地林线上部落叶松后代扩散的主导方向和有效距离
在过去的 150 年里,气候发生了巨大的变化,迫使世界各地研究最多的地点的上层林线前进。前进的速度变化很大——从几十米到几百米的高度。这是因为树额种群对气候变化的反应程度取决于生物和物理因素的复杂相互作用。由此产生的林分格局是扩散和生存功能相互作用的结果。一些出版物已经解决了这种模式是如何生成的问题。为了了解乌拉尔山脉树群分布上限的空间结构是如何形成的,我们评估了母体个体后代扩散的距离和方向。我们在莱德布额叶发现了这一点。种群中,后代的“有效”扩散范围为 3 至 758 米(中位值在开阔森林中为 20-33 米,在极地乌拉尔地区的单树苔原中为 219 米,在乌拉尔地区的开阔森林中为 107 米)北乌拉尔)。我们发现,大多数后代不仅沿着盛行风的方向有效地分散,而且还沿着斜坡的相反方向分散,距离可达500-760米。获得的数据可用于开发基于个体的模型,该模型能够详细模拟生长上限的林分动态,并可靠地预测随着生长条件持续改善,林线交错带的未来位置和格局。观察到的气候变化的面貌。
更新日期:2024-06-20
中文翻译:
俄罗斯乌拉尔北部和极地林线上部落叶松后代扩散的主导方向和有效距离
在过去的 150 年里,气候发生了巨大的变化,迫使世界各地研究最多的地点的上层林线前进。前进的速度变化很大——从几十米到几百米的高度。这是因为树额种群对气候变化的反应程度取决于生物和物理因素的复杂相互作用。由此产生的林分格局是扩散和生存功能相互作用的结果。一些出版物已经解决了这种模式是如何生成的问题。为了了解乌拉尔山脉树群分布上限的空间结构是如何形成的,我们评估了母体个体后代扩散的距离和方向。我们在莱德布额叶发现了这一点。种群中,后代的“有效”扩散范围为 3 至 758 米(中位值在开阔森林中为 20-33 米,在极地乌拉尔地区的单树苔原中为 219 米,在乌拉尔地区的开阔森林中为 107 米)北乌拉尔)。我们发现,大多数后代不仅沿着盛行风的方向有效地分散,而且还沿着斜坡的相反方向分散,距离可达500-760米。获得的数据可用于开发基于个体的模型,该模型能够详细模拟生长上限的林分动态,并可靠地预测随着生长条件持续改善,林线交错带的未来位置和格局。观察到的气候变化的面貌。