当前位置:
X-MOL 学术
›
Sep. Purif. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A S-scheme 0D/2D heterojunction formed by decorating Cd0.5Zn0.5S nanoparticles on Cu2MoS4 plates for efficient photocatalytic hydrogen generation
Separation and Purification Technology ( IF 8.1 ) Pub Date : 2024-07-05 , DOI: 10.1016/j.seppur.2024.128694
Jiahui Yu , Ping Su , Dong Zhang , Huaihao Zhao , Nan Yang , Tengteng Liang , Dafeng Zhang , Xipeng Pu
Separation and Purification Technology ( IF 8.1 ) Pub Date : 2024-07-05 , DOI: 10.1016/j.seppur.2024.128694
Jiahui Yu , Ping Su , Dong Zhang , Huaihao Zhao , Nan Yang , Tengteng Liang , Dafeng Zhang , Xipeng Pu
![]() |
Rationally designing a Step-scheme (S-scheme) hetero-structured photocatalyst with high redox capability and separation efficiency of photoinduced carriers is considered as an attractive approach to address the shortcomings of single component and traditional hetero-structured photocatalyst. Herein, enlightened by the predictions of density functional theory (DFT), a unique S-scheme heterojunction photocatalyst was successfully fabricated by incorporating zero-dimensional (0D) Cd0.5 Zn0.5 S (CZS) on two-dimensional (2D) lamellar Cu2 MoS4 (CMS) plates via a facile coprecipitation method, which substantially enhances the photocatalytic activity for hydrogen (H2 ) generation. CZS nanoparticles deposited on the surface of CMS nanoplates play a crucial role in creating highly intimate heterojunction interfaces and abundant exposed reaction sites, laying the foundation for improved photocatalytic performance. Furthermore, the significant difference in Fermi levels and band structures between CZS and CMS result in the formation of the internal electric field (IEF) and energy band bending at the interface of the heterojunction. This S-scheme charge transfer path enables 0D/2D CZS/CMS heterojunction possesses an exceptional capacity to maintain the robust redox potential and boosts the separation efficiency of light-induced carriers, as verified by DFT calculations and energy band structure analyses. As expected, the optimal heterojunction exhibits a satisfactory H2 generation rate of 13.1 mmol·g-1 ·h−1 , which is nearly 7.7-fold higher than that of individual CZS. This study is expected to inspire the design of morphology-controlled hetero-structured photocatalyst with S-scheme charge transfer route for photocatalytic H2 generation.
中文翻译:
通过在 Cu2MoS4 板上装饰 Cd0.5Zn0.5S 纳米颗粒形成的 S 型 0D/2D 异质结,用于高效光催化制氢
合理设计具有高氧化还原能力和光诱导载流子分离效率的阶梯式 (S-scheme) 异质结构光催化剂被认为是解决单组分和传统异质结构光催化剂缺点的一种有吸引力的方法。在此,受到密度泛函理论 (DFT) 预测的启发,通过简单的共沉淀方法在二维 (2D) 层状 Cu2MoS4 (CMS) 板上掺入零维 (0D) Cd0.5Zn0.5S (CZS) 成功制造了一种独特的 S 型异质结光催化剂,大大提高了光催化生成氢气 (H2) 的活性。沉积在 CMS 纳米板表面的 CZS 纳米颗粒在创建高度紧密的异质结界面和丰富的暴露反应位点方面发挥着至关重要的作用,为提高光催化性能奠定了基础。此外,CZS 和 CMS 之间费米能级和能带结构的显着差异导致异质结界面处形成内部电场 (IEF) 和能带弯曲。这种 S 型电荷转移路径支持 0D/2D CZS/CMS 异质结,具有保持稳健氧化还原电位的特殊能力,并提高了光诱导载流子的分离效率,这一点已通过 DFT 计算和能带结构分析得到验证。正如预期的那样,最佳异质结表现出令人满意的 H2 生成速率,为 13.1 mmol·g-1·h-1,比单个 CZS 高出近 7.7 倍。本研究有望激发具有 S 型电荷转移路线的形态控制异质结构光催化剂的设计,用于光催化 H2 生成。
更新日期:2024-07-05
中文翻译:

通过在 Cu2MoS4 板上装饰 Cd0.5Zn0.5S 纳米颗粒形成的 S 型 0D/2D 异质结,用于高效光催化制氢
合理设计具有高氧化还原能力和光诱导载流子分离效率的阶梯式 (S-scheme) 异质结构光催化剂被认为是解决单组分和传统异质结构光催化剂缺点的一种有吸引力的方法。在此,受到密度泛函理论 (DFT) 预测的启发,通过简单的共沉淀方法在二维 (2D) 层状 Cu2MoS4 (CMS) 板上掺入零维 (0D) Cd0.5Zn0.5S (CZS) 成功制造了一种独特的 S 型异质结光催化剂,大大提高了光催化生成氢气 (H2) 的活性。沉积在 CMS 纳米板表面的 CZS 纳米颗粒在创建高度紧密的异质结界面和丰富的暴露反应位点方面发挥着至关重要的作用,为提高光催化性能奠定了基础。此外,CZS 和 CMS 之间费米能级和能带结构的显着差异导致异质结界面处形成内部电场 (IEF) 和能带弯曲。这种 S 型电荷转移路径支持 0D/2D CZS/CMS 异质结,具有保持稳健氧化还原电位的特殊能力,并提高了光诱导载流子的分离效率,这一点已通过 DFT 计算和能带结构分析得到验证。正如预期的那样,最佳异质结表现出令人满意的 H2 生成速率,为 13.1 mmol·g-1·h-1,比单个 CZS 高出近 7.7 倍。本研究有望激发具有 S 型电荷转移路线的形态控制异质结构光催化剂的设计,用于光催化 H2 生成。