当前位置: X-MOL 学术Mech. Syst. Signal Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical analysis and experimental validation of the coupled thermal effects in swashplate type axial piston machines
Mechanical Systems and Signal Processing ( IF 7.9 ) Pub Date : 2024-07-03 , DOI: 10.1016/j.ymssp.2024.111673
Swarnava Mukherjee , Lizhi Shang , Andrea Vacca

This paper explores the significant impact of thermal effects on the performance of Swashplate-Type Axial Piston Machines, a crucial aspect often overlooked in current numerical analyses primarily focused on energy efficiency prediction and machine design optimization. Existing methods commonly neglect or only partially account for thermal dynamics and heat transfer within both fluid and solid domains, resulting in inaccurate power loss predictions and hindering designers’ ability to enhance energy efficiency and durability. To address this gap, we present a comprehensive thermal model that fully couples the thermal behavior of the entire machine. This model incorporates mass and energy conservation in displacement chambers and slipper pockets, dynamics of floating bodies, Reynolds equation, and energy conservation in lubricating interfaces. Furthermore, it considers heat transfer in floating bodies and thermo-elasto-hydrodynamic effects induced by pressure and thermal deformation. Validation against experimental data demonstrates the accuracy of the model in predicting solid body temperature distribution and overall machine efficiency. By comparing machine efficiencies with an isothermal model, we highlight the critical importance of considering thermal effects. Additionally, our model offers insights into key power loss sources across various operating conditions, contributing to a deeper understanding of machine performance and aiding in future design optimizations.

中文翻译:


斜盘式轴向活塞机耦合热效应的数值分析和实验验证



本文探讨了热效应对斜盘式轴向活塞机性能的重大影响,这是当前主要关注能源效率预测和机器设计优化的数值分析中经常被忽视的一个关键方面。现有方法通常忽略或仅部分考虑流体和固体域内的热动力学和传热,导致功率损耗预测不准确,并阻碍设计人员提高能源效率和耐用性的能力。为了解决这一差距,我们提出了一个全面的热模型,可以完全耦合整个机器的热行为。该模型结合了位移室和滑块腔中的质量和能量守恒、浮体动力学、雷诺方程以及润滑界面中的能量守恒。此外,它还考虑了浮体中的传热以及压力和热变形引起的热弹流体动力效应。针对实验数据的验证证明了该模型在预测固体温度分布和整体机器效率方面的准确性。通过将机器效率与等温模型进行比较,我们强调了考虑热效应的至关重要性。此外,我们的模型还可以深入了解各种操作条件下的关键功率损耗来源,有助于更深入地了解机器性能并有助于未来的设计优化。
更新日期:2024-07-03
down
wechat
bug