当前位置:
X-MOL 学术
›
J. Comput. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Comparative study of the photocatalytic activity of g-C3N4/MN4 (M = Mn, Fe, Co) for water splitting reaction: A theoretical study
Journal of Computational Chemistry ( IF 3.4 ) Pub Date : 2024-07-06 , DOI: 10.1002/jcc.27464 Dhilshada V N 1 , Sabyasachi Sen 2 , Mausumi Chattopadhyaya 1
Journal of Computational Chemistry ( IF 3.4 ) Pub Date : 2024-07-06 , DOI: 10.1002/jcc.27464 Dhilshada V N 1 , Sabyasachi Sen 2 , Mausumi Chattopadhyaya 1
Affiliation
In this study, nanocomposites of g-C3N4/MN4 (where M is Mn, Fe and Co) have been designed using advanced density functional theory (DFT) calculations. A comprehensive analysis was conducted on the geometry, electronic, optical properties, work function, charge transfer interaction and adhesion energy of the g-C3N4/MN4 heterostructures and concluded that g-C3N4/FeN4 and g-C3N4/CoN4 heterojunctions exhibit higher photocatalytic performance than individual units. The better photocatalytic activity can be attributed mainly by two facts; (i) the visible light absorption of both g-C3N4/FeN4 and g-C3N4/CoN4 interfaces are higher compared to its isolated analogs and (ii) a significant enhancement of band gap energy in g-C3N4/FeN4 and g-C3N4/CoN4 heterostructures limited the electron–hole recombination significantly. The potential of the g-C3N4/MN4 heterojunctions as a photocatalyst for the water splitting reaction was assessed by examining its band alignment for water splitting reaction. Importantly, while the electronic and magnetic properties of MN4 systems were studied, this is the first example of inclusion of MN4 on graphene-based material (g-C3N4) for studying the photocatalytic activity. The state of the art DFT calculations emphasis that g-C3N4/FeN4 and g-C3N4/CoN4 heterojunctions are half metallic photocatalysts, which is limited till date.
中文翻译:
g-C3N4/MN4 (M = Mn, Fe, Co) 光催化分解水反应活性的理论研究
在本研究中,使用高级密度泛函理论 (DFT) 计算设计了 g-C3N4/MN4(其中 M 是 Mn、Fe 和 Co)的纳米复合材料。对 g-C3N4/MN4 异质结构的几何形状、电子、光学性质、功函数、电荷转移相互作用和粘附能进行了综合分析,得出 g-C3N4/FeN4 和 g-C3N4/CoN4 异质结表现出比单个单元更高的光催化性能。较好的光催化活性主要归因于两个事实;(i) g-C3N4/FeN4 和 g-C3N4/CoN4 界面的可见光吸收率高于其孤立的类似物,以及 (ii) g-C3N4/FeN4 和 g-C3N4/CoN4 异质结构中带隙能量的显着增强显着限制了电子-空穴复合。通过检查其分解水反应的能带排列,评估了 g-C3N4/MN4 异质结作为光催化剂用于分解水反应的潜力。重要的是,虽然研究了 MN4 系统的电子和磁性,但这是在石墨烯基材料 (g-C3N4) 上加入 MN4 以研究光催化活性的第一个例子。最先进的 DFT 计算强调 g-C3N4/FeN4 和 g-C3N4/CoN4 异质结是半金属光催化剂,这在迄今为止是有限的。
更新日期:2024-07-06
中文翻译:
g-C3N4/MN4 (M = Mn, Fe, Co) 光催化分解水反应活性的理论研究
在本研究中,使用高级密度泛函理论 (DFT) 计算设计了 g-C3N4/MN4(其中 M 是 Mn、Fe 和 Co)的纳米复合材料。对 g-C3N4/MN4 异质结构的几何形状、电子、光学性质、功函数、电荷转移相互作用和粘附能进行了综合分析,得出 g-C3N4/FeN4 和 g-C3N4/CoN4 异质结表现出比单个单元更高的光催化性能。较好的光催化活性主要归因于两个事实;(i) g-C3N4/FeN4 和 g-C3N4/CoN4 界面的可见光吸收率高于其孤立的类似物,以及 (ii) g-C3N4/FeN4 和 g-C3N4/CoN4 异质结构中带隙能量的显着增强显着限制了电子-空穴复合。通过检查其分解水反应的能带排列,评估了 g-C3N4/MN4 异质结作为光催化剂用于分解水反应的潜力。重要的是,虽然研究了 MN4 系统的电子和磁性,但这是在石墨烯基材料 (g-C3N4) 上加入 MN4 以研究光催化活性的第一个例子。最先进的 DFT 计算强调 g-C3N4/FeN4 和 g-C3N4/CoN4 异质结是半金属光催化剂,这在迄今为止是有限的。