当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Organic Cations Texture Zinc Metal Anodes for Deep Cycling Aqueous Zinc Batteries
Advanced Materials ( IF 27.4 ) Pub Date : 2024-07-05 , DOI: 10.1002/adma.202408287
Guoqiang Ma 1 , Wentao Yuan 1 , Xiaotong Li 1 , Tongqiang Bi 1 , Linhuan Niu 1 , Yue Wang 1 , Mengyu Liu 1 , Yuanyuan Wang 1 , Zhaoxi Shen 1 , Ning Zhang 1, 2
Affiliation  

Manipulating the crystallographic orientation of zinc (Zn) metal to expose more (002) planes is promising to stabilize Zn anodes in aqueous electrolytes. However, there remain challenges involving the non-epitaxial electrodeposition of highly (002) textured Zn metal and the maintenance of (002) texture under deep cycling conditions. Herein, a novel organic imidazolium cations-assisted non-epitaxial electrodeposition strategy to texture electrodeposited Zn metals is developed. Taking the 1-butyl-3-methylimidazolium cation (Bmim+) as a paradigm additive, the as-prepared Zn film ((002)-Zn) manifests a compact structure and a highly (002) texture without containing (100) signal. Mechanistic studies reveal that Bmim+ featuring oriented adsorption on the Zn-(002) plane can reduce the growth rate of (002) plane to render the final exposure of (002) texture, and homogenize Zn nucleation and suppress H2 evolution to enable the compact electrodeposition. In addition, the formulated Bmim+-containing ZnSO4 electrolyte effectively sustains the (002) texture even under deep cycling conditions. Consequently, the combination of (002) texture and Bmim+-containing electrolyte endows the (002)-Zn electrode with superior cycling stability over 350 h under 20 mAh cm−2 with 72.6% depth-of-discharge, and assures the stable operation of full Zn batteries with both coin-type and pouch-type configurations, significantly outperforming the (002)-Zn and commercial Zn-based batteries in Bmim+-free electrolytes.

中文翻译:


用于深循环水系锌电池的有机阳离子织构锌金属阳极



操纵锌(Zn)金属的晶体取向以暴露更多的(002)平面有望稳定水性电解质中的锌阳极。然而,仍然存在涉及高(002)织构锌金属的非外延电沉积以及在深循环条件下维持(002)织构的挑战。在此,开发了一种新型有机咪唑阳离子辅助非外延电沉积策略来织构电沉积锌金属。以1-丁基-3-甲基咪唑鎓阳离子(Bmim + )作为范例添加剂,所制备的Zn薄膜((002)-Zn)表现出致密的结构和高度的(002)织构,且没有包含(100)信号。机理研究表明,Bmim + 在Zn-(002)面上具有定向吸附作用,可以降低(002)面的生长速率,最终暴露(002)织构,均匀化Zn成核并抑制H 2 的演变使电沉积变得紧凑。此外,配制的含有 Bmim + 的 ZnSO 4 电解质即使在深度循环条件下也能有效维持(002)织构。因此,(002)织构和含Bmim + 电解质的组合赋予(002)-Zn电极在20 mAh cm −2 下350小时内优异的循环稳定性,稳定性为72.6%放电深度,并确保硬币型和袋型配置的全锌电池的稳定运行,显着优于 Bmim 中的 (002)-锌和商用锌基电池 + -游离电解质。
更新日期:2024-07-05
down
wechat
bug