Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Synthesis, Crystal Structure, and Electropolymerization of 1,4-Di([2,2′-bithiophen]-3-yl)buta-1,3-diyne
Crystals ( IF 2.4 ) Pub Date : 2024-07-05 , DOI: 10.3390/cryst14070620 Alessandro Pedrini 1 , Chiara Massera 1 , Enrico Dalcanale 1 , Marco Giannetto 1 , Roberta Pinalli 1
Crystals ( IF 2.4 ) Pub Date : 2024-07-05 , DOI: 10.3390/cryst14070620 Alessandro Pedrini 1 , Chiara Massera 1 , Enrico Dalcanale 1 , Marco Giannetto 1 , Roberta Pinalli 1
Affiliation
For their great structural versatility, thiophene-based π-conjugated systems have been widely exploited in the preparation of low band gap materials. Here, we report the synthesis of a highly conjugated tetrathiophene system, namely 1,4-di([2,2′-bithiophen]-3-yl)buta-1,3-diyne (1), that presents two bithiophene units connected at position 3 by a butadiynylene spacer. Single-crystal X-ray diffraction (SC-XRD) analysis elucidated the structure of 1, confirming the planarity of the molecule. The molecule was then electropolymerized onto the surface of a gold-coated piezoelectric quartz crystal, showing a high reactivity that is ascribable to the extended conjugation. The frontier molecular orbital energies of 1 were obtained via DFT optimization performed on the crystal structure-derived molecular geometry. Finally, DFT was also used to estimate the polymer band gap.
中文翻译:
1,4-二([2,2'-联噻吩]-3-基)丁-1,3-二炔的合成、晶体结构和电聚合
由于其结构的多样性,基于噻吩的π共轭体系已被广泛用于低带隙材料的制备。在这里,我们报道了高度共轭四噻吩系统的合成,即 1,4-di([2,2'-联噻吩]-3-基)buta-1,3-diyne (1),该系统呈现两个连接的联噻吩单元在位置3处由丁二炔基间隔基连接。单晶X射线衍射(SC-XRD)分析阐明了1的结构,证实了分子的平面性。然后将该分子电聚合到镀金压电石英晶体的表面上,显示出高反应性,这归因于延长的共轭。 1 的前沿分子轨道能量是通过对晶体结构衍生的分子几何形状进行 DFT 优化获得的。最后,DFT 还用于估计聚合物带隙。
更新日期:2024-07-05
中文翻译:
1,4-二([2,2'-联噻吩]-3-基)丁-1,3-二炔的合成、晶体结构和电聚合
由于其结构的多样性,基于噻吩的π共轭体系已被广泛用于低带隙材料的制备。在这里,我们报道了高度共轭四噻吩系统的合成,即 1,4-di([2,2'-联噻吩]-3-基)buta-1,3-diyne (1),该系统呈现两个连接的联噻吩单元在位置3处由丁二炔基间隔基连接。单晶X射线衍射(SC-XRD)分析阐明了1的结构,证实了分子的平面性。然后将该分子电聚合到镀金压电石英晶体的表面上,显示出高反应性,这归因于延长的共轭。 1 的前沿分子轨道能量是通过对晶体结构衍生的分子几何形状进行 DFT 优化获得的。最后,DFT 还用于估计聚合物带隙。