当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Single-nanoparticle-thick three-phase plasmonic catalysis for efficient nitrogen photofixation without sacrificial agents
Nano Energy ( IF 16.8 ) Pub Date : 2024-06-29 , DOI: 10.1016/j.nanoen.2024.109922
Siew Kheng Boong , Carice Chong , Jiajia Zhang , Tharishinny Raja Mogan , Yimeng Ni , Haitao Li , Hiang Kwee Lee

Plasmonic catalysis promises efficient green ammonia production from nitrogen gas, water, and (sun)light. However, existing designs are limited by poor catalytic performance and reliance on organic sacrificial agents. Here, we achieve efficient ammonia photosynthesis at ambient conditions without sacrificial agent by introducing a single-particle-thick plasmonic superlattice at a three-phase catalytic interface. By organizing Ag-square superlattice on a hydrogel to create an electromagnetically hot solid-liquid-gas tri-interface, our three-phase plasmonic catalyst achieves a superior ammonia formation rate of 101 µmol h g, surpassing conventional two-phase configuration by ∼33-fold. More importantly, our unique design attains up to ∼26-fold and ∼2500-fold enhancements in ammonia formation rate and apparent quantum yield, respectively. Mechanistic investigations uncover the importance of three-phase plasmonic interface to efficiently concentrate light and enrich immiscible gas-liquid reactants at point-of-catalysis, thereby boosting nitrogen photofixation. Our work offers valuable insights for designing multifunctional plasmonic ensembles towards sustainable chemical manufacturing and a carbon-free hydrogen economy.

中文翻译:


单纳米颗粒厚三相等离子体催化无需牺牲剂即可实现高效氮光固定



等离激元催化有望利用氮气、水和(太阳)光高效生产绿色氨。然而,现有的设计受到催化性能差和对有机牺牲剂的依赖的限制。在这里,我们通过在三相催化界面引入单粒子厚的等离子体超晶格,在环境条件下实现了高效的氨光合作用,无需牺牲剂。通过在水凝胶上组织银方超晶格来创建电磁热固-液-气三界面,我们的三相等离子体催化剂实现了 101 µmol h g 的卓越氨形成率,比传统的两相配置高出〜33-折叠。更重要的是,我们独特的设计使氨形成速率和表观量子产率分别提高了约 26 倍和约 2500 倍。机理研究揭示了三相等离子体界面对于有效聚集光并在催化点富集不混溶的气液反应物的重要性,从而促进氮光固定。我们的工作为设计多功能等离子体整体以实现可持续化学制造和无碳氢经济提供了宝贵的见解。
更新日期:2024-06-29
down
wechat
bug