当前位置: X-MOL 学术Crit. Care › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impact of the COVID-19 pandemic on lung-protective ventilation practice in critically ill patients with respiratory failure: a retrospective cohort study from a New England healthcare network
Critical Care ( IF 8.8 ) Pub Date : 2024-07-04 , DOI: 10.1186/s13054-024-04982-4
Ricardo Munoz-Acuna 1, 2 , Elena Ahrens 1, 2 , Aiman Suleiman 1, 2, 3 , Luca J Wachtendorf 1, 2 , Basit A Azizi 1, 2 , Simone Redaelli 1, 2, 4 , Tim M Tartler 1, 2 , Guanqing Chen 1, 2 , Elias N Baedorf-Kassis 1, 5 , Maximilian S Schaefer 1, 2, 6 , Shahla Siddiqui 2
Affiliation  

To the Editor—Before the Coronavirus Disease 2019 (COVID-19) pandemic, over three million patients in the United States of America (USA) suffered from hypoxemic respiratory failure annually. COVID-19-related hypoxemic respiratory failure required admission to the intensive care unit (ICU) in nearly 30% of cases and mechanical ventilation for more than 10% of patients, leading to strain in the healthcare system [1]. Previous evidence suggested an increased mortality in non-COVID-19 patients related to increased health-care strain. The question remains whether patient care, and especially best-practice mechanical ventilation management, was also affected by the pandemic [2]. We hypothesized that the COVID-19 pandemic with its consequences on healthcare strain and staffing shortages affected ventilator management and lung-protective ventilation (LPV) practice patterns in patients with hypoxemic respiratory failure.

Mechanically ventilated patients admitted to the ICUs of Beth Israel Deaconess Medical Center, Boston, MA, USA, with hypoxemic respiratory failure between January 2018 and December 2021 were included. Hypoxemic respiratory failure was defined as a ratio of partial arterial pressure of oxygen to fraction of inspired oxygen (P/F) ≤ 300 at the first available blood gas analysis. Patients with a duration of mechanical ventilation < 12 h or with missing data on confounding variables were excluded. LPV was defined as the simultaneous presence of a plateau pressure (Pplat) of < 30 cmH2O, a driving pressure ≤ 15 cmH2O, as well as tidal volumes (Vt) of 4–8 ml per kilogram of predicted body weight (PBW) [3]. Parameter recordings within the first two hours of mechanical ventilation were excluded to avoid artefacts from the initial patient transfer and stabilisation period. We examined changes in LPV practices during and pre-pandemic periods using an interrupted time series analysis with quarterly time points. The second quarter of the year 2020 (April to June) was established as ‘start of intervention period’ since April 2020 was the month when COVID-19 patients reached the proportional majority in ICU occupation in line with the pandemic transmission consolidation in the USA [4]. Analyses were adjusted for patient baseline characteristics (age, sex, respiratory system compliance, P/F ratio, and Elixhauser Comorbidity Index).

Among 2965 included patient cases, 1381 (46.6%) were admitted pre-pandemic and 1,584 (54.4%) during the pandemic. Overall, after onset of the pandemic, between 3.3% and 77.9% of patients per month were COVID-19 positive with an overall of 386 (28%) patients included. Detailed patient characteristics, ventilator parameters and demographics are included in the Supplemental Document 1, Tables S1, S2. Prior to the pandemic, there was an increasing trend in the utilization of LPV (absolute increase of 0.8% per quarter; 95% CI 0.3–1.4%; p = 0.006, Fig. 1). During the first three months after the pandemic onset, there was an absolute decrease of − 3.2% (95% CI − 6.3 to − 0.2%; p = 0.049) in the utilization of LPV in comparison to the preceding quarter before the pandemic (January–March 2020). Subsequently, the utilization of LPV did not change over the course of the broader COVID-19 pandemic period (April–December 2021, absolute decrease − 0.1% per quarter after the onset of the pandemic; 95% CI − 0.7 to 0.5; p = 0.62).

Fig. 1
figure 1

Interrupted Time Series Analysis. The multivariate linear prediction is depicted in bold lines with its respective 95% confidence interval and the adjusted prediction is presented as hollow circles, black crosses represent the observed LPV. The pre-pandemic period is represented in red, and the pandemic period is shown in blue. Abbreviations: LPV: Lung-protective ventilation

Full size image

These findings of a discrete ascent in LPV practices in the ICU before the onset of the COVID-19 pandemic align with other studies reporting a wide application of mechanical ventilation using low Vt and driving pressures [5]. The decrease in the utilization of LPV after the onset of the COVID-19 pandemic potentially reflects a systemic disruption of resource allocation after March 2020, including protective equipment supplies, ventilators, and hospital staff. Medical centers across the USA suffered from staffing shortages that might have contributed to worsened patient outcomes and suboptimal respiratory care. Furthermore, it might be attributed to a higher prevalence of patients with severe lung disease in the ICU as reflected by the lower P/F ratio in the pandemic period (Tables S1, S2). Ventilation management adherent to LPV protocols can be difficult in patients with worsening respiratory system compliance, and severe hypercapnia or hypoxemia.

The generalizability to other settings is limited by the use of data from one academic hospital network in New England. Our findings now provide a rationale to investigate the impact of ICU stress on quality of care in different scenarios as well as hospital settings and geographical locations.

In conclusion, the COVID-19 pandemic may have influenced the existing trend in the implementation of LPV strategies in critically ill patients. The data suggest that the overall trend in the utilisation of LPV remained stable throughout the pandemic, which could indicate some resilience and adaptability in ICU practices. However, the findings also imply that patients with hypoxemic respiratory failure were less likely to receive LPV, though these observations should be interpreted with caution given the study's retrospective design. Further research is needed to confirm these trends.

The datasets generated and/or analyzed during the current study are not publicly available due data compliance and privacy policies but are available from the corresponding author on reasonable request by a qualified researcher.

COVID-19:

Coronavirus Disease 2019

ICU:

Intensive care unit

LPV:

Lung-protective ventilation

PBW:

Predicted body weight

P/F ratio:

Ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen

Pplat :

Plateau pressure

Vt:

Tidal volume

  1. Gupta S, Hayek SS, Wang W, Chan L, Mathews KS, Melamed ML, Brenner SK, Leonberg-Yoo A, Schenck EJ, Radbel J, Reiser J, Bansal A, Srivastava A, Zhou Y, Sutherland A, Green A, Shehata AM, Goyal N, Vijayan A, Velez JCQ, Shaefi S, Parikh CR, Arunthamakun J, Athavale AM, Friedman AN, Short SAP, Kibbelaar ZA, Abu Omar S, Admon AJ, Donnelly JP, Gershengorn HB, Hernán MA, Semler MW, Leaf DE; STOP-COVID Investigators. Factors Associated With Death in Critically Ill Patients With Coronavirus Disease 2019 in the US. JAMA Intern Med. 2020 Nov 1;180(11):1436–1447. https://doi.org/10.1001/jamainternmed.2020.3596. Erratum in: JAMA Intern Med. 2020 Nov 1;180(11):1555. Erratum in: JAMA Intern Med. 2021 Aug 1;181(8):1144.

  2. Karan A, Wadhera RK. Healthcare system stress due to covid-19: evading an evolving crisis. J Hosp Med. 2021;16(2):127.

    Article PubMed PubMed Central Google Scholar

  3. Takahashi Y, Utsumi S, Fujizuka K, Suzuki H, Ushio N, Amemiya Y, et al. Effect of a systematic lung-protective protocol for COVID-19 pneumonia requiring invasive ventilation: a single center retrospective study. PLoS ONE. 2023;18(1):e0267339.

    Article CAS PubMed PubMed Central Google Scholar

  4. Shultz JM, Perlin A, Saltzman RG, Espinel Z, Galea S. Pandemic march: 2019 coronavirus disease’s first wave circumnavigates the globe. Disaster Med Public Health Prep. 2020;14(5):e28-32.

    Article PubMed Google Scholar

  5. Botta M, Tsonas AM, Pillay J, Boers LS, Algera AG, Bos LDJ, et al. Ventilation management and clinical outcomes in invasively ventilated patients with COVID-19 (PRoVENT-COVID): a national, multicentre, observational cohort study. Lancet Respir Med. 2021;9(2):139–48.

    Article CAS PubMed Google Scholar

Download references

We appreciate the guidance provided by Laura Ritter-Cox, MS, related to intricacies and behaviors of the Metavision system. We are grateful to Tuyet Tran, MSc, and JoAnn Jordan, MSc for their reliable support in the bioinformatics systems.

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Authors and Affiliations

  1. Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA

    Ricardo Munoz-Acuna, Elena Ahrens, Aiman Suleiman, Luca J. Wachtendorf, Basit A. Azizi, Simone Redaelli, Tim M. Tartler, Guanqing Chen, Elias N. Baedorf-Kassis & Maximilian S. Schaefer

  2. Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA

    Ricardo Munoz-Acuna, Elena Ahrens, Aiman Suleiman, Luca J. Wachtendorf, Basit A. Azizi, Simone Redaelli, Tim M. Tartler, Guanqing Chen, Maximilian S. Schaefer & Shahla Siddiqui

  3. Department of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, University of Jordan, Amman, Jordan

    Aiman Suleiman

  4. School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy

    Simone Redaelli

  5. Department of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA

    Elias N. Baedorf-Kassis

  6. Department of Anesthesiology, Duesseldorf University Hospital, Duesseldorf, Germany

    Maximilian S. Schaefer

Authors
  1. Ricardo Munoz-AcunaView author publications

    You can also search for this author in PubMed Google Scholar

  2. Elena AhrensView author publications

    You can also search for this author in PubMed Google Scholar

  3. Aiman SuleimanView author publications

    You can also search for this author in PubMed Google Scholar

  4. Luca J. WachtendorfView author publications

    You can also search for this author in PubMed Google Scholar

  5. Basit A. AziziView author publications

    You can also search for this author in PubMed Google Scholar

  6. Simone RedaelliView author publications

    You can also search for this author in PubMed Google Scholar

  7. Tim M. TartlerView author publications

    You can also search for this author in PubMed Google Scholar

  8. Guanqing ChenView author publications

    You can also search for this author in PubMed Google Scholar

  9. Elias N. Baedorf-KassisView author publications

    You can also search for this author in PubMed Google Scholar

  10. Maximilian S. SchaeferView author publications

    You can also search for this author in PubMed Google Scholar

  11. Shahla SiddiquiView author publications

    You can also search for this author in PubMed Google Scholar

Contributions

R.M.A.: Formal analysis, data curation, writing—original draft, visualization, writing—review and editing, E.A.: writing—original draft, writing—review and editing, A.S.: writing—original draft, L.J.W.: writing—review and editing, B.A.A.: data curation, S.R.: writing—review and editing, T.M.T.: writing—original draft, writing—review and editing, G.C.: methodology, E.N.B.: conceptualization, M.S.S.: project administration, writing—review and editing, S.S.: supervision, writing—review and editing.

Corresponding author

Correspondence to Maximilian S. Schaefer.

Ethics approval and consent to participate

The BIDMC Institutional Review Board (IRB) reviewed and approved the study under the protocol number 2021P000980. The need for informed consent was waived by the IRB.

Consent for publication

Not applicable.

Competing interests

M.S.S. received funding for investigator-initiated studies from Merck & Co., which do not pertain to this manuscript. He is an associate editor for BMC Anesthesiology. He received honoraria for lectures from Fisher & Paykel Healthcare and Mindray Medical International Limited. He received an unrestricted philanthropic grant from Jeffrey and Judith Buzen. E.N.B-K. has received lecturing fees from Hamilton Medical Inc. outside the submitted work and has received a KL2 award from Harvard Catalyst; The Harvard Clinical and Translational Science Center (National Center for Advancing Translational Sciences, National Institutes of Health award No. KL2 TR002542). The funders had no role in the design and conduct of the study, the collection, management, analysis, and interpretation of the data, the preparation, review, or approval of the manuscript; or the decision to submit the manuscript for publication. R.M.A., E.A., A.S., L.J.W., B.A.A., S.R., T.M.T., G.C. and S.S. have no conflicts of interest.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Prior presentations: An abstract focusing on preliminary results was presented at the American Society of Anesthesiologists annual meeting (October 2022, New Orleans).

Supplementary file 1

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munoz-Acuna, R., Ahrens, E., Suleiman, A. et al. Impact of the COVID-19 pandemic on lung-protective ventilation practice in critically ill patients with respiratory failure: a retrospective cohort study from a New England healthcare network. Crit Care 28, 219 (2024). https://doi.org/10.1186/s13054-024-04982-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13054-024-04982-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative



中文翻译:


COVID-19 大流行对呼吸衰竭危重患者肺保护性通气实践的影响:来自新英格兰医疗网络的回顾性队列研究



致编辑——在 2019 年冠状病毒病 (COVID-19) 大流行之前,美国每年有超过 300 万患者患有低氧性呼吸衰竭。近 30% 的病例需要住进重症监护病房 (ICU),超过 10% 的患者需要机械通气,导致医疗保健系统紧张 [1]。先前的证据表明,非 COVID-19 患者的死亡率增加与医疗保健压力的增加有关。问题仍然是患者护理,尤其是最佳实践机械通气管理是否也受到大流行的影响[2]。我们假设,COVID-19 大流行及其对医疗保健紧张和人员短缺的影响影响了低氧性呼吸衰竭患者的呼吸机管理和肺保护性通气 (LPV) 实践模式。


研究纳入了 2018 年 1 月至 2021 年 12 月期间因低氧性呼吸衰竭入住美国马萨诸塞州波士顿贝斯以色列女执事医疗中心 ICU 的机械通气患者。低氧血症性呼吸衰竭定义为首次血气分析时动脉氧分压与吸入氧分数的比值 (P/F) ≤ 300。机械通气持续时间 < 12 小时或缺少混杂变量数据的患者被排除。 LPV 定义为同时存在 < 30 cmH 2 O 的平台压 (P plat )、≤ 15 cmH 2 O 的驱动压以及每公斤预测体重 4-8 ml 的潮气量 (Vt) (PBW)[3]。机械通气前两小时内的参数记录被排除,以避免最初患者转移和稳定期间的伪影。我们使用季度时间点的中断时间序列分析来研究大流行期间和大流行前 LPV 实践的变化。 2020 年第二季度(4 月至 6 月)被确定为“干预期的开始”,因为 2020 年 4 月是 COVID-19 患者在 ICU 占用中达到比例多数的月份,与美国的大流行传播巩固一致[ 4]。根据患者基线特征(年龄、性别、呼吸系统顺应性、P/F 比和 Elixhauser 合并症指数)调整分析。


在 2965 例纳入的患者病例中,1381 例(46.6%)在大流行前入院,1,584 例(54.4%)在大流行期间入院。总体而言,大流行爆发后,每月有 3.3% 至 77.9% 的患者呈 COVID-19 阳性,总共有 386 名患者 (28%)。详细的患者特征、呼吸机参数和人口统计数据包含在补充文件 1 的表 S1、S2 中。在大流行之前,LPV的使用量呈增加趋势(每季度绝对增加0.8%;95% CI 0.3-1.4%; p = 0.006,图1)。在大流行爆发后的前三个月,与大流行前的上一季度(1 月份)相比,LPV 的使用绝对下降了 − 3.2%(95% CI − 6.3 至 − 0.2%; p = 0.049)。 –2020 年 3 月)。随后,LPV 的利用率在更广泛的 COVID-19 大流行期间(2021 年 4 月至 12 月,大流行开始后每季度绝对下降 0.1%;95% CI - 0.7 至 0.5; p = 0.62)。

 图1
figure 1


中断时间序列分析。多元线性预测以粗线表示,其各自的 95% 置信区间,调整后的预测以空心圆圈表示,黑色十字代表观察到的 LPV。大流行前时期用红色表示,大流行时期用蓝色表示。缩写:LPV:肺保护性通气

 全尺寸图像


这些发现在 COVID-19 大流行爆发之前 ICU 中 LPV 实践的离散上升与其他研究报告的使用低 Vt 和驱动压力的机械通气的广泛应用相一致 [5]。 COVID-19 大流行爆发后 LPV 利用率的下降可能反映出 2020 年 3 月后资源分配的系统性中断,包括防护设备供应、呼吸机和医院工作人员。美国各地的医疗中心都面临人员短缺的问题,这可能导致患者预后恶化和呼吸系统护理欠佳。此外,这可能是由于 ICU 中严重肺部疾病患者的患病率较高,这一点可以从大流行期间较低的 P/F 比率反映出来(表 S1、S2)。对于呼吸系统依从性恶化、严重高碳酸血症或低氧血症的患者来说,遵守 LPV 方案的通气管理可能很困难。


对其他环境的普遍适用性受到新英格兰一家学术医院网络数据使用的限制。我们的研究结果为调查 ICU 压力在不同情况以及医院环境和地理位置下对护理质量的影响提供了依据。


总之,COVID-19 大流行可能影响了危重患者 LPV 策略实施的现有趋势。数据表明,LPV 使用的总体趋势在整个大流行期间保持稳定,这可能表明 ICU 实践具有一定的弹性和适应性。然而,研究结果还表明,低氧性呼吸衰竭患者接受 LPV 的可能性较小,但考虑到该研究的回顾性设计,应谨慎解释这些观察结果。需要进一步的研究来证实这些趋势。


由于数据合规性和隐私政策,当前研究期间生成和/或分析的数据集不公开,但可根据合格研究人员的合理要求从相应作者处获取。

 新冠肺炎:

 2019冠状病毒病

 重症监护病房:

 重症监护病房

 液化石油气:


肺保护性通气

 工作负载:

 预测体重

 功率/功率比:


动脉氧分压与吸入氧分数之比

 P平台

 平台压力

 电压:

 潮气量


  1. Gupta S、Hayek SS、Wang W、Chan L、Mathews KS、Melamed ML、Brenner SK、Leonberg-Yoo A、Schenck EJ、Radbel J、Reiser J、Bansal A、Srivastava A、Zhou Y、Sutherland A、Green A、 Shehata AM、Goyal N、Vijayan A、Velez JCQ、Shaefi S、Parikh CR、Arunthamakun J、Athavale AM、Friedman AN、Short SAP、Kibbelaar ZA、Abu Omar S、Admon AJ、Donnelly JP、Gershengorn HB、Hernán MA、Semler MW,叶DE;停止新冠病毒调查人员。与美国 2019 年冠状病毒病危重患者死亡相关的因素。 JAMA 实习医生。 2020 年 11 月 1 日;180(11):1436–1447。 https://doi.org/10.1001/jamainternmed.2020.3596。勘误表:JAMA Intern Med。 2020 年 11 月 1 日;180(11):1555。勘误表:JAMA Intern Med。 2021 年 8 月 1 日;181(8):1144。


  2. 卡兰·A,瓦德拉·RK。 covid-19 造成的医疗保健系统压力:逃避不断演变的危机。 J 医院医学。 2021;16(2):127。


    文章 PubMed PubMed Central Google Scholar


  3. Takahashi Y、Utsumi S、Fujizuka K、Suzuki H、Ushio N、Amemiya Y 等。系统性肺保护方案对需要有创通气的 COVID-19 肺炎的影响:单中心回顾性研究。公共科学图书馆一号。 2023;18(1):e0267339。


    文章 CAS PubMed PubMed Central Google Scholar


  4. Shultz JM、Perlin A、Saltzman RG、Espinel Z、Galea S。流行病进行曲:2019 年冠状病毒疾病第一波环绕全球。灾难医学公共卫生准备。 2020;14(5):e28-32。


    文章 PubMed 谷歌学术


  5. Botta M、Tsonas AM、Pillay J、Boers LS、Algera AG、Bos LDJ 等。 COVID-19 有创通气患者的通气管理和临床结果 (PROVENT-COVID):一项全国性、多中心、观察性队列研究。柳叶刀呼吸医学。 2021;9(2):139–48。


    文章 CAS PubMed 谷歌学术

 下载参考资料


我们感谢 Laura Ritter-Cox, MS 提供的有关 Metavision 系统的复杂性和行为的指导。我们感谢 Tuyet Tran 理学硕士和 JoAnn Jordan 理学硕士在生物信息学系统方面的可靠支持。


这项研究没有获得公共、商业或非营利部门资助机构的任何具体资助。

 作者和单位


  1. 麻醉研究卓越中心 (CARE),贝斯以色列女执事医疗中心,哈佛医学院,波士顿,马萨诸塞州,美国


    Ricardo Munoz-Acuna、Elena Ahrens、Aiman Suleiman、Luca J. Wachtendorf、Basit A. Azizi、Simone Redaelli、Tim M. Tartler、陈冠庆、Elias N. Baedorf-Kassis 和 Maximilian S. Schaefer


  2. 哈佛医学院贝斯以色列女执事医疗中心麻醉、重症监护和疼痛医学科,330 Brookline Avenue, Boston, MA, 02215, USA


    Ricardo Munoz-Acuna、Elena Ahrens、Aiman Suleiman、Luca J. Wachtendorf、Basit A. Azizi、Simone Redaelli、Tim M. Tartler、Guanqing Chen、Maximilian S. Schaefer 和 Shahla Siddiqui


  3. 约旦安曼约旦大学医学院麻醉、重症监护和疼痛管理系

     艾曼·苏莱曼


  4. 米兰比可卡大学医学与外科学院,米兰意大利

     西蒙娜·雷代埃利


  5. 美国马萨诸塞州波士顿哈佛医学院贝斯以色列女执事医疗中心肺科、重症监护和睡眠医学科

     埃利亚斯·N·拜多夫-卡西斯


  6. 麻醉科,杜塞尔多夫大学医院,杜塞尔多夫德国

     马克西米利安·谢弗

 作者

  1. Ricardo Munoz-Acuna查看作者出版物


    您也可以在PubMed中搜索该作者 谷歌学术


  2. Elena Ahrens查看作者出版物


    您也可以在PubMed中搜索该作者 谷歌学术


  3. 艾曼·苏莱曼查看作者出版物


    您也可以在PubMed中搜索该作者 谷歌学术


  4. Luca J. Wachtendorf查看作者出版物


    您也可以在PubMed中搜索该作者 谷歌学术


  5. Basit A. Azizi查看作者出版物


    您也可以在PubMed中搜索该作者 谷歌学术


  6. Simone Redaelli查看作者出版物


    您也可以在PubMed中搜索该作者 谷歌学术


  7. Tim M. Tartler查看作者出版物


    您也可以在PubMed中搜索该作者 谷歌学术


  8. 陈冠庆查看作者出版物


    您也可以在PubMed中搜索该作者 谷歌学术


  9. Elias N. Baedorf-Kassis查看作者出版物


    您也可以在PubMed中搜索该作者 谷歌学术


  10. Maximilian S. Schaefer查看作者出版物


    您也可以在PubMed中搜索该作者 谷歌学术


  11. Shahla Siddiqui查看作者出版物


    您也可以在PubMed中搜索该作者 谷歌学术

 贡献


RMA:形式分析、数据管理、写作-初稿、可视化、写作-审阅和编辑、EA:写作-初稿、写作-审阅和编辑、AS:写作-初稿、LJW:写作-审阅和编辑、BAA :数据管理,SR:写作—审查和编辑,TMT:写作—初稿,写作—审查和编辑,GC:方法论,ENB:概念化,MSS:项目管理,写作—审查和编辑,SS:监督,写作—审查和编辑。

 通讯作者


马克西米利安·谢弗 (Maximilian S. Schaefer) 通讯。


道德批准并同意参与


BIDMC 机构审查委员会 (IRB) 审查并批准了该研究,方案号为 2021P000980。 IRB 免除了知情同意的必要性。

 同意发表

 不适用。

 利益竞争


MSS 从默克公司获得了研究者发起的研究的资助,这些研究与本手稿无关。他是 BMC Anesthesiology 的副主编。他获得斐雪派克医疗保健公司和迈瑞医疗国际有限公司的演讲酬金。他从杰弗里·布森 (Jeffrey Buzen) 和朱迪思·布森 (Judith Buzen) 那里获得了无限制的慈善资助。 ENB-K。在提交的作品之外,已获得 Hamilton Medical Inc. 的讲座费,并获得了哈佛催化剂 (Harvard Catalyst) 颁发的 KL2 奖;哈佛临床和转化科学中心(国家转化科学促进中心,美国国立卫生研究院奖号:KL2 TR002542)。资助者在研究的设计和实施、数据的收集、管理、分析和解释、手稿的准备、审查或批准中没有任何作用;或提交稿件出版的决定。 RMA、EA、AS、LJW、BAA、SR、TMT、GC 和 SS 无利益冲突。

 出版商备注


施普林格·自然对于已出版的地图和机构隶属关系中的管辖权主张保持中立。


先前的演示:在美国麻醉医师协会年会上(2022 年 10 月,新奥尔良)提出了一份侧重于初步结果的摘要。

 补充文件1


开放获取本文根据知识共享署名 4.0 国际许可证获得许可,该许可证允许以任何媒介或格式使用、共享、改编、分发和复制,只要您对原作者和来源给予适当的认可,提供知识共享许可的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果文章的知识共享许可中未包含材料,并且您的预期用途不受法律法规允许或超出了允许的用途,则您需要直接获得版权所有者的许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。知识共享公共领域奉献豁免 (http://creativecommons.org/publicdomain/zero/1.0/) 适用于本文中提供的数据,除非数据的信用额度中另有说明。

 转载和许可

Check for updates. Verify currency and authenticity via CrossMark

 引用这篇文章


穆尼奥斯-阿库纳 (Munoz-Acuna, R.)、阿伦斯 (Ahrens, E.)、苏莱曼 (Suleiman, A.)等人。 COVID-19 大流行对呼吸衰竭危重患者肺保护性通气实践的影响:来自新英格兰医疗网络的一项回顾性队列研究。重症监护28 , 219 (2024)。 https://doi.org/10.1186/s13054-024-04982-4

 下载引文


  • 收件日期


  • 接受日期


  • 发布日期

 分享这篇文章


您与之分享以下链接的任何人都可以阅读此内容:


抱歉,本文目前没有可共享的链接。


由 Springer Nature SharedIt 内容共享计划提供

更新日期:2024-07-04
down
wechat
bug