当前位置: X-MOL 学术Eur. J. Heart Fail. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Why left atrial venting fails to influence extracorporeal life support survival in cardiogenic shock: Unravelling the intricate reality of unloading
European Journal of Heart Failure ( IF 16.9 ) Pub Date : 2024-07-03 , DOI: 10.1002/ejhf.3362
Aurore Ughetto 1 , Christophe Vandenbriele 2, 3 , Clément Delmas 4, 5
Affiliation  

Over the past decade, extracorporeal life support (ECLS) has gained increasing utilization in the management of refractory cardiogenic shock (CS) with a class IIaC recommendation according to the latest European and US guidelines.1 However, recent randomized controlled trials (RCTs) and meta-analyses can be considered inconclusive in demonstrating the benefit of ECLS compared with optimal medical treatment in patients with acute myocardial infarction complicated by CS.

Various factors may explain these neutral results but the inherent haemodynamic effect of the ECLS itself probably plays a major role. Due to its aortic retrograde flow principle, peripheral ECLS can lead to left ventricular (LV) overload and distension, increased myocardial workload and pulmonary oedema, compromising cardiac recovery, and diming the patient's prognosis. To optimize the chances of ECLS outcomes with good heart recovery, several left heart decompression (LHD) strategies have been proposed. However, all strategies are invasive, entail risks of bleeding, haemolysis and thromboembolic complications, and the risk–benefit ratio of their use remains unclear.2 Despite limited available data, recent guidelines suggest early initiation of LHD after ECLS initiation (class IIaC) without further defining the preferred unloading technique or its implementation timing after ECLS.1

Left heart decompression techniques aim to unload the left ventricle by increasing the forward flow, achieved either indirectly with the intra-aortic balloon pump (IABP) or directly through microaxial flow pumps, or through left atrial (LA) drainage (atrioseptostomy) or active transapical venting (Figure 1). Active LA venting implies the implementation of an atrioseptostomy in combination with a 21–23 Fr cannula inserted through the interatrial septum and connected in ‘Y’ to the venous ECLS circuit which remains in place for several days. Its achievement justifies multidisciplinary skills and expertise assuring safe septal defect realization and correct cannula positioning, but also close circuit monitoring during the ECLS run.

Details are in the caption following the image
Figure 1
Open in figure viewerPowerPoint
Left heart venting/unloading techniques. IABP, intra-aortic balloon pump; LA, left atrial; LV, left ventricular; VA-ECMO, venoarterial extracorporeal membrane oxygenation. *Active LA venting involves performing an atrioseptostomy along with the insertion of a 21–23 Fr cannula through the interatrial septum, which is then connected in a ‘Y’ configuration to the venous extracorporeal life support circuit. **Passive LA venting in paediatric cases involves atrioseptostomy using an inflated balloon inserted through a transseptal puncture over a wire to establish an interatrial communication in the left atrium. Subsequently, the balloon is pulled back, reopening the interatrial septum. However, in adults, the balloon is inflated on the septal side, resulting in an orifice of approximately 10–15 mm when using a 21–26 mm balloon, leading to a significant left-to-right shunt. ***Active LV surgical venting: cannula (16–20 Fr) sited at the LV apex and incorporated into the venous drainage limb of the VA-ECMO circuit via a ‘Y’ connector can provide effective biventricular unloading. Minimally invasive surgical techniques using a subxiphoid and anterolateral thoracotomy approach have been described. ****Passive pulmonary artery venting: a percutaneous catheter is placed into the pulmonary artery and connected to the inflow cannula of the VA-ECMO circuit. The use of 5 Fr and 6 Fr catheters has been shown to reduce LV dimensions and increase mean arterial and pulse pressures. However, the size of percutaneous catheters limits the maximum flow that can be achieved because of a higher risk of haemolysis.

In this viewpoint around LA venting, we focus on two recent RCTs, EARLY-UNLOAD and EVOLVE-ECLS, conducted in patients with CS undergoing ECLS. In the EARLY-UNLOAD trial (n = 116; single centre), the comparison centred on early unloading through active LA venting within a 12-h window versus a rescue unloading strategy triggered by clinical indications of increased LV afterload.3 The EVOLVE-ECMO trial (n = 60; two centres) examined LHD via LA venting at the time of ECLS insertion (termed the early approach) versus the rescue unloading approach.4 Both trials yielded concordant findings, indicating the absence of significant differences in 30-day mortality rates. It is pertinent to acknowledge that the relatively modest sample sizes in both trials were insufficiently powered to adequately address their primary endpoints. Notably, the sample size calculation for the EARLY-UNLOAD trial was predicated on achieving a 50% reduction in relative mortality risk, assuming an initial unsuitable absolute mortality rate of 25% within the early intervention group. This assumption starkly contrasts with the 50–60% mortality rates reported in the literature for the CS population, underscoring the imperative need for more comprehensive investigations. Moreover, the interpretation of the EARLY-UNLOAD trial is complexified by a high rate of crossover with 41% of patients in the control group that finally underwent LA venting.3 This highlights the significant challenges associated with intention-to-treat analysis, adding a layer of complexity to interpreting the results. The difference in terms of timing of implantation (21.8 h in the control group vs. 1.1 h in the early LHD group) allows us to suggest that early discharge via LA venting is not superior to LHD based on signs of overload, but does not permit to conclude about the efficacy and superiority of LHD by LA venting.

Considering the findings of these two trials, two specific points deserve further attention.

First, it is essential to determine whether the use of LA venting is an effective unloading technique. Indeed, the utilization of LA venting for LV unloading prompts attention regarding its effectiveness, particularly in scenarios devoid of significant mitral regurgitation. This approach addresses the LV preload, but it disregards the intricate contributions of venous return via Thebesian veins, bronchial veins, and retro-aortic circulation, elements that contribute significantly in case of aortic insufficiency. Furthermore, this indirect method of LV unloading may compromise LV ejection efficiency, hindering adequate opening of the aortic valve and potentially exacerbating stasis, thereby increasing the incidence of LV and aortic thrombus formation. Therefore, the suggested technique may inadvertently overlook crucial facets of cardiac physiology and the intricate dynamics of the circulation. Additionally, the de-escalation process is compromised by the simultaneous withdrawal of LA venting and venoarterial extracorporeal membrane oxygenation (VA-ECMO), not only imposing physiological stress to the myocardium, but also resulting in a persistent septal defect in 17–100% of the survivors, requiring additional closure in up to 50% of cases.5

In opposite to LA venting, the mechanism of both ImpellaTM and IABP offer physiological advantages. The Impella functions as an axial flow pump that actively unloads the left ventricle by propelling blood from the left ventricle into the ascending aorta. This actively assists in reducing myocardial workload and enhancing coronary perfusion. The IABP enhances diastolic coronary perfusion and reduces LV afterload, albeit at a lower extent as compared to the micro-axial flow pumps.6

Secondly, the ideal timing for LHD implementation is a crucial factor for optimizing its effectiveness. Unloading devices can be inserted before, together with, or shortly after the initiation of VA-ECMO. A proactive approach may safeguard the vulnerable ventricle and facilitate myocardial recovery by preventing exposure to elevated afterload, although this should be balanced against the potential risks of increased complications and costs. Based on a recent retrospective multicentre study, Schrage et al.7 showed that early LHD (within the first 2 h after ECLS initiation) was associated with a reduced risk of 30-day mortality (hazard ratio 0.64, 95% confidence interval [CI] 0.46–0.88) and an increased likelihood of successful weaning from mechanical ventilation (odds ratio 2.17, 95% CI 1.19–3.93). It is worth noting that this study specifically examined active LV unloading using the ImpellaTM device. In contrast, despite the remarkably fast median time between randomization and transseptal LA cannulation in the early LHD group, the EARLY-UNLOAD and EVOLVE-ECLS trials failed to confirm the advantages of early LHD. This raises an important question: is the mechanism of unloading/device a contributing factor to the observed outcomes? Although current data suggest that prophylactic unloading after the initiation of VA-ECMO appears beneficial, we can only conclude that further prospective RCTs are needed to establish the optimal timing of LDH initiation. A tailored approach guided by individual haemodynamics and clinical criteria can individualize the unloading strategy and possibly improve outcomes.

The only clinical data comparing different unloading strategies rise from meta-analyses pooling retrospective studies.8 Results of these studies highlight the importance of further research in this field comparing different devices and timing of LHD initiation. Ongoing RCTs (UNLOAD-ECMO and REMAP-ECMO trials) are attempting to address the question whether early and/or systematic LHD initiation in CS patients treated with ECLS is beneficial or not. However, challenges in early LHD management and potential complications must be recognized, as they may hinder patient recruitment into RCTs, as seen in the premature termination of the REVERSE trial. Furthermore, additional RCTs comparing different LHD strategies, such as ImpellaTM and IABP, are crucial to evaluate their impact on mortality, morbidity, and myocardial recovery, considering the limited availability and high cost of cardiac grafts and LV assist devices (Table 1). Awaiting randomized data to make firm recommendations on the preferred unloading methods, currently, decisions should be made on a case-by-case pragmatic base, guided by local expertise, and available strategies in the multidisciplinary shock team.

Table 1. Overview of the past and present mechanical circulatory support unloading trials in cardiogenic shock
Trial Type of CS Status n LHD type LHD timing Primary endpoint Main secondary endpoints Results
Completed/stopped
EARLY-UNLOAD (NCT04775472) All Completed 116 Active LA venting 12 h All-cause mortality at 30 days
  1. VA-ECMO treatment failure
  2. Cardiac and non-cardiac death within 30 days
  3. In-hospital mortality,
  4. Rate of VA-ECMO weaning and the duration of VA-ECMO
  5. Rate of disappearance of pulmonary congestion
  6. Rate of mechanical ventilation weaning
  7. Rate of bridge to a durable VAD or HTx
No significant difference in all-cause mortality at 30 days (46.6% in the early group vs. 44.8% in the conventional group (HR 1.02, 95% CI 0.59–1.74; p = 0.942)
EVOLVE-ECLS (NCT03740711) All Completed 60 Active LA venting ECMO implentation Weaning of VA-ECMO support
  1. In-hospital mortality
  2. Adverse outcome due to LA venting
  3. Days free from mechanical ventilation
  4. Success rate to HTx
  5. Rate of pulmonary oedema improvement
No significant differences in the rate of VA-ECMO weaning (70.0% vs. 76.7%; RR 0.91, 95% CI 0.67–1.24; p = 0.386) and survival to discharge (53.3% vs. 50.0%; p = 0.796)
REVERSE (NCT03431467) All Stopped prematurely for lack of recruitment 98 Impella CP 12 h 30-day survival free from mechanical circulatory support, HTx or inotropic support
  1. Survival to hospital discharge
  2. Between-group differences in inotropic score, pulmonary compliance and radiologic measures of pulmonary congestion at 24–72 h
  3. Between-group differences in echocardiographic measurements, biochemical profile, and haemodynamics
  4. Biomarkers of cardiac recovery
  5. Incidence of crossover
Not published to date
Ongoing
UNLOAD ECMO (NCT05577195) All Recruiting 198 Impella 8 h Time to death from any-cause within 30 days after randomization
  1. Rate and time to death from any-cause at 6 and 12 months
  2. Rate and time to cardiovascular death at 30 days, 6 months and 12 months
  3. Days free from VA-ECMO at 30 days
  4. Rate and time to first hospitalization for HF at 6 and 12 months and recurrent events within 12 months
  5. LV function assessed by TTE at 30 days, 6 and 12 months
  6. Major bleeding (BARC criteria ≥3a) and time to event up to 30 days
  7. Stroke or cerebral bleeding and time to event up to 30 days
REMAP ECMO (NCT05913622) All Recruiting 430 IABP 8 h ECMO weaning success
  1. Treatment failure
  2. Mortality rate at 30 and 90 days and 1 year
  3. ECMO support duration
  4. Major bleeding events
  5. Unplanned surgical or catheter-based intervention of the leg(s)
  6. Time to lactate normalization
  7. Time to first negative net fluid balance
  8. LV ejection fraction at 30 days
  9. Time course in VIS during ECMO support
  10. Quality of life at 1 year
  • BARC, Bleeding Academic Research Consortium; CI, confidence interval; CS, cardiogenic shock; ECMO, extracorporeal membrane oxygenation; HF, heart failure; HR, hazard ratio; HTx, heart transplantation; IABP, intra-aortic balloon pump; LA, left atrial; LHD, left heart decompression; LV, left ventricular; RR, relative risk; TTE, transthoracic echocardiography; VAD, ventricular assist device; VA-ECMO, venoarterial extracorporeal membrane oxygenation; VIS, vasoactive inotropic score.

Conflict of interest: none declared.



中文翻译:


为什么左心房通气不能影响心源性休克的体外生命支持生存:揭开卸载的复杂现实



在过去的十年中,体外生命支持 (ECLS) 在难治性心源性休克 (CS) 的治疗中得到了越来越多的应用,根据最新的欧洲和美国指南,其推荐为 IIaC 级。 1然而,最近的随机对照试验 (RCT) 和荟萃分析在证明 ECLS 与最佳药物治疗相比对急性心肌梗死并发 CS 患者的益处方面尚无定论。


有多种因素可以解释这些中性结果,但 ECLS 本身固有的血流动力学效应可能起着主要作用。由于其主动脉逆行血流原理,外周ECLS可导致左心室(LV)负荷过重和扩张、心肌负荷增加和肺水肿,损害心脏恢复并降低患者的预后。为了优化 ECLS 结果和良好心脏恢复的机会,已经提出了几种左心减压 (LHD) 策略。然而,所有策略都是侵入性的,都会带来出血、溶血和血栓栓塞并发症的风险,并且其使用的风险效益比仍不清楚。 2尽管可用数据有限,但最近的指南建议在 ECLS 启动后尽早启动 LHD(IIaC 类),而无需进一步定义 ECLS 后的首选卸载技术或其实施时间。 1


左心减压技术旨在通过增加前向流量来减轻左心室负荷,可通过主动脉内球囊反搏泵 (IABP) 间接实现,或直接通过微轴流泵实现,或通过左心房 (LA) 引流(房间隔造口术)或主动经心尖导管实现通风(1)。主动 LA 通气意味着实施房间隔造口术,并结合 21-23 Fr 插管插入房间隔,并以“Y”形连接至静脉 ECLS 回路,该回路可保留数天。其成就证明了多学科技能和专业知识的合理性,可确保安全的间隔缺损实现和正确的插管定位,而且还能在 ECLS 运行期间进行闭路监控。

Details are in the caption following the image
 图1

在图查看器中打开微软幻灯片软件

左心排气/卸载技术。 IABP,主动脉内球囊反搏器; LA,左心房; LV,左心室; VA-ECMO,静脉动脉体外膜氧合。 *主动 LA 通气涉及进行房间隔造口术,同时通过房间隔插入 21-23 Fr 插管,然后以“Y”形结构连接到静脉体外生命支持回路。 **儿科病例中的被动左心室通气涉及房间隔造口术,使用通过导线穿过房间隔穿刺插入的充气气球,以在左心房建立心房间连通。随后,气球被拉回,重新打开房间隔。然而,在成人中,球囊在隔膜侧膨胀,当使用 21-26 毫米球囊时,会产生约 10-15 毫米的孔口,导致显着的左向右分流。 ***主动左心室手术通气:插管 (16–20 Fr) 位于左心室心尖,并通过“Y”连接器纳入 VA-ECMO 回路的静脉引流分支,可提供有效的双心室卸载。已经描述了使用剑突下和前外侧开胸入路的微创手术技术。 ****被动肺动脉通气:将经皮导管放入肺动脉并连接到 VA-ECMO 回路的流入插管。使用 5 Fr 和 6 Fr 导管已被证明可以减小左心室尺寸并增加平均动脉压和脉压。然而,由于溶血风险较高,经皮导管的尺寸限制了可达到的最大流量。


在围绕 LA 通气的观点中,我们重点关注最近在接受 ECLS 的 CS 患者中进行的两项随机对照试验,即 EARLY-UNLOAD 和 EVOLVE-ECLS。在 EARLY-UNLOAD 试验( n = 116;单中心)中,比较集中在通过 12 小时窗口内主动左心室通气进行早期卸载与由左心室后负荷增加的临床指征触发的救援卸载策略。 3 EVOLVE-ECMO 试验( n = 60;两个中心)检查了 ECLS 插入时通过 LA 通气的 LHD(称为早期方法)与救援卸载方法。 4两项试验得出了一致的结果,表明 30 天死亡率没有显着差异。需要承认的是,这两项试验的样本量相对较小,不足以充分解决其主要终点问题。值得注意的是,EARLY-UNLOAD 试验的样本量计算是以实现相对死亡风险降低 50% 为基础的,假设早期干预组中初始不合适的绝对死亡率为 25%。这一假设与文献报道的 CS 人群 50-60% 的死亡率形成鲜明对比,强调了进行更全面调查的迫切需要。此外,对 EARLY-UNLOAD 试验的解释因高交叉率而变得复杂,对照组中有 41% 的患者最终接受了 LA 通气。 3这凸显了与意向治疗分析相关的重大挑战,增加了解释结果的复杂性。植入时间方面的差异(对照组为 21.8 小时,对照组为 21.8 小时) 早期 LHD 组中的 1.1 小时)使我们能够根据过载迹象表明通过 LA 通气提前出院并不优于 LHD,但不允许得出通过 LA 通气进行 LHD 的功效和优越性的结论。


考虑到这两项试验的结果,有两个具体点值得进一步关注。


首先,必须确定使用 LA 通风是否是一种有效的卸载技术。事实上,利用左心室通气进行左心室卸载引起了人们对其有效性的关注,特别是在没有明显二尖瓣反流的情况下。这种方法解决了左心室前负荷的问题,但它忽略了通过底比斯静脉、支气管静脉和主动脉后循环的静脉回流的复杂贡献,这些因素在主动脉瓣关闭不全的情况下发挥着重要作用。此外,这种间接的左心室卸载方法可能会损害左心室射血效率,阻碍主动脉瓣充分打开,并可能加剧瘀滞,从而增加左心室和主动脉血栓形成的发生率。因此,所建议的技术可能会无意中忽视心脏生理学和复杂的循环动力学的关键方面。此外,降级过程因 LA 通气和静脉动脉体外膜氧合 (VA-ECMO) 的同时撤出而受到损害,不仅对心肌施加生理应激,而且还会导致 17-100% 的患者出现持续性间隔缺损。幸存者,最多 50% 的案件需要额外关闭。 5


与 LA 通气相反,Impella TM和 IABP 的机制都具有生理优势。 Impella 充当轴流泵,通过将血液从左心室推进到升主动脉来主动卸载左心室。这积极有助于减少心肌负荷和增强冠状动脉灌注。 IABP 增强舒张期冠状动脉灌注并减少左心室后负荷,尽管与微轴流泵相比程度较低。 6


其次,LHD实施的理想时机是优化其有效性的关键因素。卸载装置可以在 VA-ECMO 启动之前、同时或启动后不久插入。积极主动的方法可以通过防止后负荷升高来保护脆弱的心室并促进心肌恢复,尽管这应该与并发症和费用增加的潜在风险相权衡。 Schrage等人根据最近的一项回顾性多中心研究。图 7显示,早期 LHD(ECLS 开始后的前 2 小时内)与 30 天死亡率风险降低相关(风险比 0.64,95% 置信区间 [CI] 0.46-0.88),并且成功脱机的可能性增加。机械通气(比值比 2.17,95% CI 1.19–3.93)。值得注意的是,这项研究专门检查了使用 Impella TM装置的主动左室卸载。相比之下,尽管早期 LHD 组中随机化和房间隔 LA 插管之间的中位时间非常快,但 EARLY-UNLOAD 和 EVOLVE-ECLS 试验未能证实早期 LHD 的优势。这就提出了一个重要的问题:卸载/设备的机制是观察到的结果的影响因素吗?尽管目前的数据表明,开始 VA-ECMO 后预防性卸载似乎是有益的,但我们只能得出结论,需要进一步的前瞻性随机对照试验来确定 LDH 开始的最佳时机。以个体血流动力学和临床标准为指导的定制方法可以个性化卸载策略并可能改善结果。


比较不同卸载策略的唯一临床数据来自汇总回顾性研究的荟萃分析。 8这些研究的结果强调了在该领域进一步研究比较不同设备和 LHD 启动时间的重要性。正在进行的随机对照试验(UNLOAD-ECMO 和 REMAP-ECMO 试验)试图解决接受 ECLS 治疗的 CS 患者早期和/或系统性 LHD 是否有益的问题。然而,必须认识到早期 LHD 管理的挑战和潜在的并发症,因为它们可能会阻碍患者纳入随机对照试验,正如 REVERSE 试验的提前终止所示。此外,考虑到心脏移植物和左心室辅助装置的可用性有限且成本高昂,比较不同 LHD 策略(例如 Impella TM和 IABP)的额外随机对照试验对于评估其对死亡率、发病率和心肌恢复的影响至关重要(1)。目前,正在等待随机数据对首选卸载方法提出明确建议,目前应在当地专业知识和多学科休克团队可用策略的指导下,根据具体情况务实做出决定。


表 1.过去和现在的心源性休克机械循环支持卸载试验概述
 审判  CS类型  地位 n  铲运机型  左舵驾驶正时  主要终点  主要次要终点  结果
 已完成/已停止

提前卸载 (NCT04775472)
 全部  完全的 116  主动 LA 通气  12小时
30 天全因死亡率

  1. VA-ECMO治疗失败

  2. 30天内心源性和非心源性死亡
  3.  院内死亡率,

  4. VA-ECMO 撤机率和 VA-ECMO 持续时间

  5. 肺充血消失率

  6. 机械通气撤机率

  7. 桥接到耐用 VAD 或 HTx 的比率

30 天全因死亡率无显着差异(早期组为 46.6%,传统组为 44.8%(HR 1.02,95% CI 0.59–1.74; p = 0.942)
EVOLVE-ECLS (NCT03740711)  全部  完全的 60  主动 LA 通气  ECMO植入
取消 VA-ECMO 支持
  1.  院内死亡率

  2. LA 排气导致的不良后果

  3. 无需机械通气的天数
  4.  HTx 成功率

  5. 肺水肿改善率

VA-ECMO 撤机率(70.0% vs. 76.7%;RR 0.91,95% CI 0.67–1.24; p = 0.386)和出院生存率(53.3% vs. 50.0%; p = 0.796)没有显着差异
 反向 (NCT03431467)  全部
因缺乏招募而提前停止
98  叶佩拉CP  12小时
无需机械循环支持、HTx 或正性肌力支持即可生存 30 天

  1. 出院存活率

  2. 24-72 小时正性肌力评分、肺顺应性和肺充血放射学测量的组间差异

  3. 超声心动图测量、生化特征和血流动力学的组间差异

  4. 心脏恢复的生物标志物
  5.  交叉发生率
 迄今为止尚未发布
 进行中

卸载 ECMO (NCT05577195)
 全部  招聘 198  因佩拉  8小时
随机分组后 30 天内因任何原因死亡的时间

  1. 6 个月和 12 个月时全因死亡的比率和时间

  2. 30 天、6 个月和 12 个月时心血管死亡的发生率和时间

  3. 30 天后无需使用 VA-ECMO 的天数

  4. 6 个月和 12 个月时首次因心力衰竭住院的比率和时间以及 12 个月内复发事件的发生率和时间

  5. 30 天、6 个月和 12 个月时通过 TTE 评估左心室功能

  6. 大出血(BARC 标准 ≥3a)和事件发生时间长达 30 天

  7. 中风或脑出血以及事件发生时间长达 30 天
 重新映射 ECMO (NCT05913622)  全部  招聘 430 IABP  8小时  ECMO脱机成功
  1.  治疗失败

  2. 30 天、90 天和 1 年死亡率
  3.  ECMO支持持续时间
  4.  重大出血事件

  5. 计划外的腿部手术或基于导管的干预

  6. 乳酸正常化时间

  7. 首次负净液体平衡的时间

  8. 30 天左心室射血分数

  9. ECMO 支持期间 VIS 中的时间进程

  10. 一年后的生活质量

  • BARC,出血学术研究联盟; CI,置信区间; CS,心源性休克; ECMO,体外膜肺氧合;心力衰竭,心力衰竭; HR,风险比; HTx,心脏移植; IABP,主动脉内球囊反搏器; LA,左心房; LHD,左心减压; LV,左心室; RR,相对风险; TTE,经胸超声心动图; VAD,心室辅助装置; VA-ECMO,静脉动脉体外膜氧合; VIS,血管活性肌力评分。


利益冲突:未声明。

更新日期:2024-07-03
down
wechat
bug