npj Quantum Information ( IF 6.6 ) Pub Date : 2024-07-02 , DOI: 10.1038/s41534-024-00863-4 Boxi Li , Tommaso Calarco , Felix Motzoi
While quantum circuits are reaching impressive widths in the hundreds of qubits, their depths have not been able to keep pace. In particular, cloud computing gates on multi-qubit, fixed-frequency superconducting chips continue to hover around the 1% error range, contrasting with the progress seen on carefully designed two-qubit chips, where error rates have been pushed towards 0.1%. Despite the strong impetus and a plethora of research, experimental demonstration of error suppression on these multi-qubit devices remains challenging, primarily due to the wide distribution of qubit parameters and the demanding calibration process required for advanced control methods. Here, we achieve this goal, using a simple control method based on multi-derivative, multi-constraint pulse shaping, which acts simultaneously against multiple error sources. Our approach establishes a two to fourfold improvement on the default calibration scheme, demonstrated on four qubits on the IBM Quantum Platform with limited and intermittent access, enabling these large-scale fixed-frequency systems to fully take advantage of their superior coherence times. The achieved CNOT fidelities of 99.7(1)% on those publically available qubits come from both coherent control error suppression and accelerated gate time.
中文翻译:
通过多导数脉冲整形抑制交叉谐振门中的实验误差
虽然量子电路的宽度已达到数百个量子位,但其深度却未能跟上。特别是,多量子位、固定频率超导芯片上的云计算门继续徘徊在 1% 的误差范围内,这与精心设计的双量子位芯片上所取得的进展形成鲜明对比,后者的错误率已被推向 0.1%。尽管有强大的推动力和大量的研究,但在这些多量子位设备上进行误差抑制的实验演示仍然具有挑战性,这主要是由于量子位参数的广泛分布以及先进控制方法所需的苛刻校准过程。在这里,我们使用基于多导数、多约束脉冲整形的简单控制方法来实现这一目标,该方法同时针对多个误差源起作用。我们的方法将默认校准方案提高了两到四倍,并在具有有限和间歇性访问的 IBM Quantum Platform 上的四个量子位上进行了演示,使这些大规模固定频率系统能够充分利用其卓越的相干时间。在这些公开可用的量子位上实现的 99.7(1)% 的 CNOT 保真度来自相干控制误差抑制和加速门时间。