当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In vivo magnetogenetics for cell-type-specific targeting and modulation of brain circuits
Nature Nanotechnology ( IF 38.1 ) Pub Date : 2024-07-02 , DOI: 10.1038/s41565-024-01694-2
Seo-Hyun Choi , Jihye Shin , Chanhyun Park , Jung-uk Lee , Jaegyeong Lee , Yuko Ambo , Wookjin Shin , Ri Yu , Ju-Young Kim , Jungsu David Lah , Donghun Shin , Gooreum Kim , Kunwoo Noh , Wuhyun Koh , C. Justin Lee , Jae-Hyun Lee , Minsuk Kwak , Jinwoo Cheon

Neuromodulation technologies are crucial for investigating neuronal connectivity and brain function. Magnetic neuromodulation offers wireless and remote deep brain stimulations that are lacking in optogenetic- and wired-electrode-based tools. However, due to the limited understanding of working principles and poorly designed magnetic operating systems, earlier magnetic approaches have yet to be utilized. Furthermore, despite its importance in neuroscience research, cell-type-specific magnetic neuromodulation has remained elusive. Here we present a nanomaterials-based magnetogenetic toolbox, in conjunction with Cre-loxP technology, to selectively activate genetically encoded Piezo1 ion channels in targeted neuronal populations via torque generated by the nanomagnetic actuators in vitro and in vivo. We demonstrate this cell-type-targeting magnetic approach for remote and spatiotemporal precise control of deep brain neural activity in multiple behavioural models, such as bidirectional feeding control, long-term neuromodulation for weight control in obese mice and wireless modulation of social behaviours in multiple mice in the same physical space. Our study demonstrates the potential of cell-type-specific magnetogenetics as an effective and reliable research tool for life sciences, especially in wireless, long-term and freely behaving animals.



中文翻译:


用于细胞类型特异性靶向和脑回路调节的体内磁遗传学



神经调节技术对于研究神经元连接和大脑功能至关重要。磁神经调节提供无线和远程深部脑刺激,这是基于光遗传学和有线电极的工具所缺乏的。然而,由于对工作原理的了解有限以及设计不佳的磁性操作系统,早期的磁性方法尚未得到利用。此外,尽管细胞类型特异性磁神经调节在神经科学研究中很重要,但它仍然难以捉摸。在这里,我们提出了一种基于纳米材料的磁发生工具箱,与 Cre-loxP 技术相结合,通过纳米磁致动器在体外和体内产生的扭矩选择性地激活目标神经元群体中基因编码的 Piezo1 离子通道。我们展示了这种细胞类型靶向磁性方法,可在多种行为模型中远程和时空精确控制深部脑神经活动,例如双向喂养控制、肥胖小鼠体重控制的长期神经调节以及多种行为模型中社会行为的无线调节。同一物理空间中的老鼠。我们的研究证明了细胞类型特异性磁遗传学作为生命科学研究有效且可靠的工具的潜力,特别是在无线、长期和自由行为的动物中。

更新日期:2024-07-02
down
wechat
bug