当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanostructured Hybrid Catalysts Empower the Artificial Leaf for Solar-Driven Ammonia Production from Nitrate
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-07-02 , DOI: 10.1039/d3ee03836j
Chen Han, Caixia Li, Jodie A. Yuwono, Ziheng Liu, Kaiwen Sun, Kai Wang, Guojun He, Jialiang Huang, Priyank Vijaya Kumar, Jitraporn Vongsvivut, Jialin Cong, Hamid Mehrvarz, Zhaojun Han, Xunyu Lu, Jian Pan, Xiaojing Hao, Rose Amal

Converting solar energy into chemicals and fuels through photoelectrocatalytic (PEC) process is challenging but holds significant potential for advancing sustainable development. Here we introduce an innovative system to realize solar-driven NH3 production from waste nitrate by nano-structured top layer (NSTL) hybrid catalysts modified commercial Si absorber, to bridge the gap from fundamental understanding to the process engineering. Specifically, we employ a rationally designed Si/Cu-NSTL/Co(OH)2 ternary photocathode featuring a Schottky barrier contact enabling optimized photo-carrier transport pathways and a beneficial co-adsorption configuration of *NO3-H2O moieties. This photocathode exhibits the best-known performance in the literature for the PEC conversion of NO3 to NH3, boasting an onset potential of approximately 1 VRHE and a remarkable Faradaic efficiency of nearly 100%. Building upon these findings, we develop the first large-scale unbiased PEC device (an artificial leaf) capable of simultaneously producing NH3 and valorizing biomass, achieving a solar utilization efficiency of approximately 4%. Its scalability and practical feasibility have been further validated through rigorous outdoor testing with an assembled tandem device array. The process techno-economic assessment shows compelling economic viability of this technology across diverse application scenarios in NH3 production, resulting in substantial savings of fossil fuel and a reduction of CO2 emissions. We anticipate that this work will serve as a valuable resource for the design of next-generation photoelectrodes and devices, bringing us one step closer to realizing standalone solar-to-sustainable chemical applications.

中文翻译:


纳米结构混合催化剂使人造叶子能够利用太阳能从硝酸盐生产氨



通过光电催化(PEC)过程将太阳能转化为化学品和燃料具有挑战性,但在促进可持续发展方面具有巨大潜力。在这里,我们介绍了一种创新系统,通过纳米结构顶层 (NSTL) 混合催化剂和改性商用硅吸收剂,实现从废硝酸盐中太阳能驱动的 NH 3 生产,从而弥合从基础理解到工艺工程的差距。具体来说,我们采用合理设计的 Si/Cu-NSTL/Co(OH) 2 三元光电阴极,具有肖特基势垒接触,可实现优化的光载流子传输路径和*NO 3 -H 2 O 部分。该光电阴极在将 NO 3 转化为 NH 3 的 PEC 转化方面表现出了文献中最知名的性能,起始电位约为 1 V RHE 法拉第效率接近 100%,令人惊叹。基于这些发现,我们开发了第一个大型无偏 PEC 装置(人造叶子),能够同时生产 NH 3 和生物量,实现约 4% 的太阳能利用效率。通过组装串联器件阵列的严格户外测试,其可扩展性和实际可行性得到了进一步验证。工艺技术经济评估表明,该技术在 NH 3 生产的不同应用场景中具有令人信服的经济可行性,可大幅节省化石燃料并减少 CO 2 排放。 我们预计这项工作将成为下一代光电极和设备设计的宝贵资源,使我们离实现独立的太阳能到可持续化学应用又近了一步。
更新日期:2024-07-02
down
wechat
bug