Nature Geoscience ( IF 15.7 ) Pub Date : 2024-07-02 , DOI: 10.1038/s41561-024-01479-1 Richard G. Stockey , Devon B. Cole , Una C. Farrell , Heda Agić , Thomas H. Boag , Jochen J. Brocks , Don E. Canfield , Meng Cheng , Peter W. Crockford , Huan Cui , Tais W. Dahl , Lucas Del Mouro , Keith Dewing , Stephen Q. Dornbos , Joseph F. Emmings , Robert R. Gaines , Timothy M. Gibson , Benjamin C. Gill , Geoffrey J. Gilleaudeau , Karin Goldberg , Romain Guilbaud , Galen Halverson , Emma U. Hammarlund , Kalev Hantsoo , Miles A. Henderson , Charles M. Henderson , Malcolm S. W. Hodgskiss , Amber J. M. Jarrett , David T. Johnston , Pavel Kabanov , Julien Kimmig , Andrew H. Knoll , Marcus Kunzmann , Matthew A. LeRoy , Chao Li , David K. Loydell , Francis A. Macdonald , Joseph M. Magnall , N. Tanner Mills , Lawrence M. Och , Brennan O’Connell , Anais Pagès , Shanan E. Peters , Susannah M. Porter , Simon W. Poulton , Samantha R. Ritzer , Alan D. Rooney , Shane Schoepfer , Emily F. Smith , Justin V. Strauss , Gabriel Jubé Uhlein , Tristan White , Rachel A. Wood , Christina R. Woltz , Inessa Yurchenko , Noah J. Planavsky , Erik A. Sperling
A geologically rapid Neoproterozoic oxygenation event is commonly linked to the appearance of marine animal groups in the fossil record. However, there is still debate about what evidence from the sedimentary geochemical record—if any—provides strong support for a persistent shift in surface oxygen immediately preceding the rise of animals. We present statistical learning analyses of a large dataset of geochemical data and associated geological context from the Neoproterozoic and Palaeozoic sedimentary record and then use Earth system modelling to link trends in redox-sensitive trace metal and organic carbon concentrations to the oxygenation of Earth’s oceans and atmosphere. We do not find evidence for the wholesale oxygenation of Earth’s oceans in the late Neoproterozoic era. We do, however, reconstruct a moderate long-term increase in atmospheric oxygen and marine productivity. These changes to the Earth system would have increased dissolved oxygen and food supply in shallow-water habitats during the broad interval of geologic time in which the major animal groups first radiated. This approach provides some of the most direct evidence for potential physiological drivers of the Cambrian radiation, while highlighting the importance of later Palaeozoic oxygenation in the evolution of the modern Earth system.
中文翻译:
新元古代和古生代大气含氧量和海洋生产力持续增加
地质上快速的新元古代氧化事件通常与化石记录中海洋动物群的出现有关。然而,关于沉积地球化学记录中的哪些证据(如果有的话)为动物崛起之前地表氧的持续变化提供了强有力的支持,仍然存在争议。我们对来自新元古代和古生代沉积记录的地球化学数据和相关地质背景的大型数据集进行统计学习分析,然后使用地球系统建模将氧化还原敏感的痕量金属和有机碳浓度的趋势与地球海洋和大气的氧化联系起来。我们没有找到新元古代晚期地球海洋大规模氧化的证据。然而,我们确实重建了大气中氧气和海洋生产力的适度长期增长。在主要动物群首次辐射的广阔地质时期内,地球系统的这些变化将增加浅水栖息地的溶解氧和食物供应。这种方法为寒武纪辐射的潜在生理驱动因素提供了一些最直接的证据,同时强调了晚古生代氧化在现代地球系统演化中的重要性。