当前位置: X-MOL 学术JAMA Neurol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Derivation and Validation of ICD-10 Codes for Identifying Incident Stroke
JAMA Neurology ( IF 20.4 ) Pub Date : 2024-07-01 , DOI: 10.1001/jamaneurol.2024.2044
Jesse A Columbo 1, 2 , Natalie Daya 3 , Lisandro D Colantonio 4 , Zhixin Wang 4 , Kathryn Foti 4 , Hyacinth I Hyacinth 5 , Michelle C Johansen 6 , Rebecca Gottesman 7 , Phillip P Goodney 1, 2 , Virginia J Howard 4 , Paul Muntner 4 , Andrea L C Schneider 8, 9 , Elizabeth Selvin 3 , Caitlin W Hicks 3, 10
Affiliation  

ImportanceClaims data with International Statistical Classification of Diseases, Tenth Revision (ICD-10) codes are routinely used in clinical research. However, the use of ICD-10 codes to define incident stroke has not been validated against expert-adjudicated outcomes in the US population.ObjectiveTo develop and validate the accuracy of an ICD-10 code list to detect incident stroke events using Medicare inpatient fee-for-service claims data.Design, Setting, and ParticipantsThis cohort study used data from 2 prospective population-based cohort studies, the Atherosclerosis Risk in Communities (ARIC) study and the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study, and included participants aged 65 years or older without prior stroke who had linked Medicare claims data. Stroke events in the ARIC and REGARDS studies were identified via active surveillance and adjudicated by expert review. Medicare-linked ARIC data (2016-2018) were used to develop a list of ICD-10 codes for incident stroke detection. The list was validated using Medicare-linked REGARDS data (2016-2019). Data were analyzed from September 1, 2022, through September 30, 2023.ExposuresStroke events detected in Medicare claims vs expert-adjudicated stroke events in the ARIC and REGARDS studies.Main Outcomes and MeasuresThe main outcomes were sensitivity and specificity of incident stroke detection using ICD-10 codes.ResultsIn the ARIC study, there were 110 adjudicated incident stroke events among 5194 participants (mean [SD] age, 80.1 [5.3] years) over a median follow-up of 3.0 (range, 0.003-3.0) years. Most ARIC participants were women (3160 [60.8%]); 993 (19.1%) were Black and 4180 (80.5%) were White. Using the primary diagnosis code on a Medicare billing claim, the ICD-10 code list had a sensitivity of 81.8% (95% CI, 73.3%-88.5%) and a specificity of 99.1% (95% CI, 98.8%-99.3%) to detect incident stroke. Using any diagnosis code on a Medicare billing claim, the sensitivity was 94.5% (95% CI, 88.5%-98.0%) and the specificity was 98.4% (95% CI, 98.0%-98.8%). In the REGARDS study, there were 140 adjudicated incident strokes among 6359 participants (mean [SD] age, 75.8 [7.0] years) over a median follow-up of 4.0 (range, 0-4.0) years. More than half of the REGARDS participants were women (3351 [52.7%]); 1774 (27.9%) were Black and 4585 (72.1%) were White. For the primary diagnosis code, the ICD-10 code list had a sensitivity of 70.7% (95% CI, 63.2%-78.3%) and a specificity of 99.1% (95% CI, 98.9%-99.4%). For any diagnosis code, the ICD-10 code list had a sensitivity of 77.9% (95% CI, 71.0%-84.7%) and a specificity of 98.9% (95% CI, 98.6%-99.2%).Conclusions and RelevanceThese findings suggest that ICD-10 codes could be used to identify incident stroke events in Medicare claims with moderate sensitivity and high specificity.

中文翻译:


用于识别中风事件的 ICD-10 代码的推导和验证



重要性具有国际疾病统计分类第十修订版 (ICD-10) 代码的 Claims 数据通常用于临床研究。然而,使用 ICD-10 代码定义新发卒中尚未针对美国人群的专家裁决结果进行验证。目的开发和验证 ICD-10 代码列表的准确性,以使用 Medicare 住院按服务收费索赔数据检测事件卒中事件。设计、设置和参与者该队列研究使用了来自 2 项基于人群的前瞻性队列研究的数据,即社区动脉粥样硬化风险 (ARIC) 研究和中风地理和种族差异的原因 (REGARDS) 研究,并包括 65 岁或以上没有中风既往史且有关联 Medicare 索赔数据的参与者。ARIC 和 REGARD 研究中的卒中事件是通过主动监测确定的,并由专家评审裁决。与 Medicare 相关的 ARIC 数据 (2016-2018) 用于开发用于事件卒中检测的 ICD-10 代码列表。该列表使用与 Medicare 相关的 REGARD 数据 (2016-2019) 进行了验证。数据分析时间为 2022 年 9 月 1 日至 2023 年 9 月 30 日。主要结局和测量主要结局是使用 ICD-10 代码检测新发卒中的敏感性和特异性。结果在 ARIC 研究中,在 5194 名参与者 (平均 [SD] 年龄,80.1 [5.3] 岁) 中,在中位随访 3.0 (范围,0.003-3.0) 年期间,有 110 例被判定为中风事件。大多数 ARIC 参与者是女性 (3160 [60.8%]);黑人 993 人 (19.1%),白人 4180 人 (80.5%)。 使用 Medicare 账单索赔的主要诊断代码,ICD-10 代码列表检测新发卒中的敏感性为 81.8% (95% CI,73.3%-88.5%),特异性为 99.1% (95% CI,98.8%-99.3%)。在 Medicare 账单索赔上使用任何诊断代码,敏感性为 94.5% (95% CI,88.5%-98.0%),特异性为 98.4% (95% CI,98.0%-98.8%)。在 REGARD 研究中,在 6359 名参与者 (平均 [SD] 年龄,75.8 [7.0] 岁) 的中位随访 4.0 (范围,0-4.0) 年期间,有 140 例被判定为新发中风。超过一半的 REGARD 参与者是女性 (3351 [52.7%]);黑人 1774 人 (27.9%),白人 4585 人 (72.1%)。对于主要诊断代码,ICD-10 代码列表的敏感性为 70.7% (95% CI,63.2%-78.3%),特异性为 99.1% (95% CI,98.9%-99.4%)。对于任何诊断代码,ICD-10 代码列表的敏感性为 77.9% (95% CI,71.0%-84.7%),特异性为 98.9% (95% CI,98.6%-99.2%)。结论和相关性这些发现表明,ICD-10 代码可用于识别 Medicare 索赔中的事件卒中事件,具有中等敏感性和高特异性。
更新日期:2024-07-01
down
wechat
bug