当前位置: X-MOL 学术Phys. Rev. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-Fidelity Detection of Large-Scale Atom Arrays in an Optical Lattice
Physical Review Letters ( IF 8.1 ) Pub Date : 2024-07-01 , DOI: 10.1103/physrevlett.133.013401
Renhao Tao 1, 2, 3 , Maximilian Ammenwerth 1, 2 , Flavien Gyger 1, 2 , Immanuel Bloch 1, 2, 3 , Johannes Zeiher 1, 2, 3
Affiliation  

Recent advances in quantum simulation based on neutral atoms have largely benefited from high-resolution, single-atom sensitive imaging techniques. A variety of approaches have been developed to achieve such local detection of atoms in optical lattices or optical tweezers. For alkaline-earth and alkaline-earth-like atoms, the presence of narrow optical transitions opens up the possibility of performing novel types of Sisyphus cooling, where the cooling mechanism originates from the capability to spatially resolve the differential optical level shifts in the trap potential. Up to now, it has been an open question whether high-fidelity imaging could be achieved in a “repulsive Sisyphus” configuration, where the trap depth of the ground state exceeds that of the excited state involved in cooling. Here, we demonstrate high-fidelity (99.971(1)%) and high-survival (99.80(5)%) imaging of strontium atoms using repulsive Sisyphus cooling. We use an optical lattice as a pinning potential for atoms in a large-scale tweezer array with up to 399 tweezers and show repeated, high-fidelity lattice-tweezer-lattice transfers. We furthermore demonstrate loading the lattice with approximately 10 000 atoms directly from the MOT and scalable imaging over >10000 lattice sites with a combined survival probability and classification fidelity better than 99.2%. Our lattice thus serves as a locally addressable and sortable reservoir for continuous refilling of optical tweezer arrays in the future.

中文翻译:


光学晶格中大规模原子阵列的高保真检测



基于中性原子的量子模拟的最新进展很大程度上受益于高分辨率、单原子敏感成像技术。人们已经开发了多种方法来实现光学晶格或光镊中原子的局部检测。对于碱土和类碱土原子,窄光学跃迁的存在开启了执行新型西西弗斯冷却的可能性,其中冷却机制源于空间解析陷阱电位中微分光学能级位移的能力。到目前为止,是否可以在“排斥西西弗斯”配置中实现高保真成像仍然是一个悬而未决的问题,其中基态的陷阱深度超过参与冷却的激发态的陷阱深度。在这里,我们展示了使用排斥西西弗斯冷却对锶原子进行高保真度 (99.971(1)%) 和高存活率 (99.80(5)%) 成像。我们使用光学晶格作为具有多达 399 个镊子的大规模镊子阵列中原子的钉扎势,并展示了重复的高保真晶格-镊子-晶格转移。我们还证明,直接从 MOT 加载大约 10 000 个原子,并在 >10000 晶格位点上进行可扩展成像,其组合生存概率和分类保真度优于 99.2%。因此,我们的晶格可以作为局部可寻址和可分类的储存器,用于未来连续重新填充光镊阵列。
更新日期:2024-07-02
down
wechat
bug