当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Carbonization of bacterial cellulose with structure retention and Nitrogen/Sulfur/Oxygen doping for application in supercapacitors electrode
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2024-06-28 , DOI: 10.1016/j.cej.2024.153590
Yan Wu , Bin Wang , Jinpeng Li , Daxian Cao , Jun Xu , Jinsong Zeng , Wenhua Gao , Xingxiang Ji , Kefu Chen

Bacterial cellulose (BC) presents great potential as an economical and sustainable biomass for the preparation of porous carbon electrodes for electrochemical energy storage. However, it is a challenge to maintain the natural structural advantages of BC and regulate the chemistry during the carbonization, significantly hindering the practical application. This study proposes a straightforward and efficient approach to rationally control the carbonization process of BC for improving structure retention and endowing multiple atomic doping, contributing an advanced electrode for supercapacitors. The addition of ammonium sulfate ((NH)SO) is instrumental in promoting the early dehydration carbonization, forming a carbon layer with thermal insulation. This thermal barrier suppresses the volatile organic compound formation, resulting in the inhibition of volume shrinkage and boosted carbon yield. Moreover, the air activation combined with the addition of (NH)SO contributes to a Nitrogen/Sulfur/Oxygen-doped carbon electrode. The well-maintained hollow structure and diverse chemistry provide sufficient active sites and enhanced ion diffusion, resulting in a specific capacitance of 268.2 F/g at a current of 0.5 A/g and outstanding capacitance retention of 99.46 % after 10,000 cycles at 5 A/g. This work provides a deep insight into the development of cost-effective biomass in developing advanced carbon electrodes for efficient energy storage.

中文翻译:


具有结构保留和氮/硫/氧掺杂的细菌纤维素碳化在超级电容器电极中的应用



细菌纤维素(BC)作为一种经济且可持续的生物质,在制备用于电化学储能的多孔碳电极方面具有巨大的潜力。然而,保持BC的天然结构优势并在碳化过程中调节化学性质是一个挑战,严重阻碍了实际应用。这项研究提出了一种简单有效的方法来合理控制BC的碳化过程,以改善结构保留并赋予多原子掺杂,为超级电容器提供先进的电极。硫酸铵((NH)SO)的添加有助于促进早期脱水碳化,形成具有隔热作用的碳层。这种热障抑制挥发性有机化合物的形成,从而抑制体积收缩并提高碳产量。此外,空气活化与 (NH)SO 的添加相结合有助于形成氮/硫/氧掺杂的碳电极。维护良好的中空结构和多样化的化学成分提供了足够的活性位点和增强的离子扩散,在 0.5 A/g 电流下的比电容为 268.2 F/g,在 5 A/g 电流下经过 10,000 次循环后,电容保持率为 99.46% G。这项工作为开发具有成本效益的生物质来开发用于高效能源存储的先进碳电极提供了深入的见解。
更新日期:2024-06-28
down
wechat
bug