当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In-situ honeycomb spheres for enhanced enzyme immobilization and stability
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2024-06-28 , DOI: 10.1016/j.cej.2024.153583
Qiushi Jiang , Yanjing Li , Minmin Wang , Wen Cao , Xueying Yang , Sihu Zhang , Liejin Guo

This paper presents a promising heterogeneous biocatalyst-immobilized cellulase system, which can facilitate the targeted catalytic conversion of biomass to reducing sugars. Magnetic Zeolite Imidazole Framework-8/chitosan (FeO/ZIF-8/CS, FZC) hybrid honeycomb microspheres were synthesized to immobilize cellulase using an in-situ growth strategy. The enhancement of immobilization efficiency induced by each constituent of the composite carrier was explored. This exploration was grounded in varying combinations of components within the honeycomb composite spheres, revealing the indispensability of ZIF-8. Through in-situ assembly, the composite material presents a microsphere with an internal honeycomb structure and multilevel pores. Effective immobilization, temperature-responsive conformational change, and cyclic stability were achieved due to the scaling effect of the channel, extensive specific surface area, and abundant amino group interactions enable immobilized enzymes to maintain excellent performance under challenging operating conditions, demonstrating an enhanced structure-performance relationship. With the obtained immobilized cellulase, we achieved a high load (461.67 mg/g) of cellulase and a significant reducing sugar yield (328.39 mg/g) from corncob waste. In addition, we investigated the enhancement effect of thermal activation on the immobilized enzyme activity of composite carrier. The results showed that the appropriate heat treatment was conducive to the activation of FZC immobilized enzyme with a reducing sugar yield 1.61 times higher than that of the control. The strategy provided in this study promotes the development of immobilized biocatalysts and provides a useful reference for the further design of biocatalytic systems.

中文翻译:


原位蜂窝球可增强酶的固定化和稳定性



本文提出了一种有前途的异质生物催化剂固定化纤维素酶系统,它可以促进生物质定向催化转化为还原糖。采用原位生长策略合成了磁性沸石咪唑框架-8/壳聚糖(FeO/ZIF-8/CS,FZC)杂化蜂窝微球来固定纤维素酶。探索了复合载体的每种成分诱导的固定化效率的提高。这项探索以蜂窝复合材料球内不同的组件组合为基础,揭示了 ZIF-8 的不可或缺性。通过原位组装,复合材料呈现出具有内部蜂窝结构和多级孔隙的微球。由于通道的缩放效应、广泛的比表面积和丰富的氨基相互作用,实现了有效的固定化、温度响应性构象变化和循环稳定性,使固定化酶在具有挑战性的操作条件下保持优异的性能,表现出增强的结构-绩效关系。利用获得的固定化纤维素酶,我们实现了纤维素酶的高负载量 (461.67 mg/g) 和玉米芯废物中显着的还原糖产量 (328.39 mg/g)。此外,我们还研究了热活化对复合载体固定化酶活性的增强作用。结果表明,适当的热处理有利于FZC固定化酶的激活,还原糖得率较对照提高1.61倍。本研究提供的策略促进了固定化生物催化剂的发展,并为生物催化系统的进一步设计提供了有益的参考。
更新日期:2024-06-28
down
wechat
bug