当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Attojoule Hexagonal Boron Nitride-Based Memristor for High-Performance Neuromorphic Computing
Small ( IF 13.0 ) Pub Date : 2024-07-01 , DOI: 10.1002/smll.202403737
Jiye Kim 1 , Jaesub Song 1 , Hyunjoung Kwak 1 , Chang‐Won Choi 1, 2 , Kyungmi Noh 1 , Seokho Moon 1 , Hyeonwoong Hwang 1 , Inyong Hwang 1 , Hokyeong Jeong 1 , Si‐Young Choi 1, 2, 3 , Seyoung Kim 1 , Jong Kyu Kim 1
Affiliation  

In next-generation neuromorphic computing applications, the primary challenge lies in achieving energy-efficient and reliable memristors while minimizing their energy consumption to a level comparable to that of biological synapses. In this work, hexagonal boron nitride (h-BN)-based metal-insulator-semiconductor (MIS) memristors operating is presented at the attojoule-level tailored for high-performance artificial neural networks. The memristors benefit from a wafer-scale uniform h-BN resistive switching medium grown directly on a highly doped Si wafer using metal–organic chemical vapor deposition (MOCVD), resulting in outstanding reliability and low variability. Notably, the h-BN-based memristors exhibit exceptionally low energy consumption of attojoule levels, coupled with fast switching speed. The switching mechanisms are systematically substantiated by electrical and nano-structural analysis, confirming that the h-BN layer facilitates the resistive switching with extremely low high resistance states (HRS) and the native SiOx on Si contributes to suppressing excessive current, enabling attojoule-level energy consumption. Furthermore, the formation of atomic-scale conductive filaments leads to remarkably fast response times within the nanosecond range, and allows for the attainment of multi-resistance states, making these memristors well-suited for next-generation neuromorphic applications. The h-BN-based MIS memristors hold the potential to revolutionize energy consumption limitations in neuromorphic devices, bridging the gap between artificial and biological synapses.

中文翻译:


用于高性能神经形态计算的阿托焦六方氮化硼忆阻器



在下一代神经形态计算应用中,主要挑战在于实现高效且可靠的忆阻器,同时将其能耗降至与生物突触相当的水平。在这项工作中,基于六方氮化硼(h-BN)的金属绝缘体半导体(MIS)忆阻器在阿焦耳级工作,专为高性能人工神经网络而设计。忆阻器受益于使用金属有机化学气相沉积 (MOCVD) 在高掺杂硅晶圆上直接生长的晶圆级均匀 h-BN 电阻开关介质,从而具有出色的可靠性和低变异性。值得注意的是,基于 h-BN 的忆阻器表现出阿焦耳级的极低能耗,以及快速的开关速度。通过电学和纳米结构分析系统地证实了开关机制,证实 h-BN 层促进了极低高阻态 (HRS) 的电阻开关,而 Si 上的原生 SiO x 有助于抑制电流过大,导致焦耳级能量消耗。此外,原子级导电丝的形成导致纳秒范围内的显着快速响应时间,并允许实现多电阻状态,使这些忆阻器非常适合下一代神经形态应用。基于 h-BN 的 MIS 忆阻器有可能彻底改变神经形态设备的能耗限制,缩小人工突触和生物突触之间的差距。
更新日期:2024-07-02
down
wechat
bug