当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electronic Structure Regulation of MnCo2O4 via Surface‐Phosphorization Coupling to Monolithic Carbon for Oxygen Electrocatalysis in Zn–Air Batteries
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-07-01 , DOI: 10.1002/adfm.202400522
Yanyan Liu 1, 2, 3 , Shuling Liu 2 , Pengxiang Zhang 2 , Jingjing Zhou 1 , Huan Liu 2 , Shuqi Li 1 , Xin Li 1 , Xiaopeng Wang 1 , Dandan Han 1 , Yu Chen 4 , Yongfeng Wang 5 , Jianchun Jiang 3 , Baojun Li 1
Affiliation  

An urgent challenge to the development of rechargeable Zn–air batteries (RZABs) is the highly active, durable, and low‐cost catalysts for oxygen reduction reaction and oxygen evolution reaction (ORR and OER). Herein, a carbon‐based monolithic catalyst is designed via anchoring P‐modified MnCo2O4 inverse spinel nanoparticles on biomass‐derived carbon (P‐MnCo2O4@PWC). The introduction of surface P atoms regulates the electronic structures and valences of metal atoms by adjusting the coordination fields by (P‐O)δ– and Metal‐P. The optimization of the adsorption behavior of key intermediates facilitates the activation and conversion of reaction species. The monolithic structure is beneficial to the construction of a three‐phase interface for efficient mass transfer and high electrical conductivity. The P‐MnCo2O4@PWC catalyst displays outstanding bifunctional catalytic properties with a thin ΔE (the difference between the OER potential at 10 mA cm2 and the ORR halfwave potential) of 0.66 V. The RZAB with P‐MnCo2O4@PWC as cathode delivers an exceptional peak power density (160 mW cm2) and remarkable cycle life (over 1200 cycles), overcoming those with noble metal counterparts. This research provides a promising general surface‐phosphorization way to the design of carbon electrocatalysts and the high‐value utilization of biomass.

中文翻译:


通过表面磷化耦合到整体碳来调节 MnCo2O4 的电子结构,用于锌空气电池中的氧电催化



可充电锌空气电池(RZAB)发展面临的紧迫挑战是用于氧还原反应和析氧反应(ORR和OER)的高活性、耐用且低成本的催化剂。在此,通过将P修饰的MnCo2O4反尖晶石纳米颗粒锚定在生物质衍生的碳上(P-MnCo2O4@PWC),设计了一种碳基整体式催化剂。表面P原子的引入通过调节(P-O)δ-和Metal-P的配位场来调节金属原子的电子结构和价态。关键中间体吸附行为的优化有利于反应物种的活化和转化。整体结构有利于构建三相界面,实现高效的传质和高电导率。 P-MnCo2O4@PWC 催化剂表现出出色的双功能催化性能,其 ΔE(10 mA cm-2 下的 OER 电位与 ORR 半波电位之间的差值)仅为 0.66 V。以 P-MnCo2O4@PWC 作为阴极的 RZAB卓越的峰值功率密度(160 mW cm-2)和卓越的循环寿命(超过 1200 次循环),超越了贵金属同类产品。该研究为碳电催化剂的设计和生物质的高值利用提供了一种有前途的通用表面磷化方法。
更新日期:2024-07-01
down
wechat
bug