当前位置: X-MOL 学术Angew. Chem. Int. Ed. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fully Optical Control of Polarization Current Direction in a Cyanide‐Bridged Trinuclear Complex
Angewandte Chemie International Edition ( IF 16.1 ) Pub Date : 2024-07-01 , DOI: 10.1002/anie.202409948
Yu-Bo Huang 1 , Sheng-Qun Su 1 , Wen-Huang Xu 1 , Wen-Wei Zheng 1 , Kai-Ge Gao 2 , Tian-Chi Ji 1 , Xiao-Peng Zhang 1 , Qi-Rui Shui 1 , Zi-Qi Zhou 1 , Taisuke Ikeda 1 , Shu-Qi Wu 1 , Osamu Sato 3
Affiliation  

As a remote and non‐contact stimulus, light offers the potential for manipulating the polarization of ferroelectric materials without physical contact. However, in current research, the non‐contact write‐read (erase) process lacks direct observation through the stable current as output signal. To address this limitation, we investigated the photoinduced polarization switching capabilities of the cyanide‐bridged compound [Fe2Co] using visible light, leading to the achievement of rewritable polarization. By subjecting [Fe2Co] crystals to alternating irradiation with 785 nm and 532 nm light, the polarization changes exhibited a distinct square wave pattern, confirming the reliability of the writing and erasing processes. Initialization involved exposing specific crystal units to 532 nm light for storing "1" or "0" information, while reading was accomplished by scanning the units with 785 nm light, resulting in brief current pulses for "1" states and no current signal for "0" states. This research unveils new possibilities for optical storage systems, paving the way for efficient and rewritable data storage and retrieval technologies, such as the next‐generation memories.

中文翻译:


氰化物桥三核配合物中偏振电流方向的完全光学控制



作为一种远程和非接触式刺激,光提供了无需物理接触即可操纵铁电材料极化的潜力。然而,在目前的研究中,非接触式读写(擦除)过程缺乏通过稳定电流作为输出信号的直接观察。为了解决这个限制,我们使用可见光研究了氰化物桥化合物[Fe2Co]的光致偏振切换能力,从而实现了可重写偏振。通过用 785 nm 和 532 nm 光交替照射 [Fe2Co] 晶体,偏振变化表现出明显的方波图案,证实了写入和擦除过程的可靠性。初始化涉及将特定晶体单元暴露在 532 nm 光下以存储“1”或“0”信息,而读取是通过用 785 nm 光扫描单元来完成的,从而产生“1”状态的短暂电流脉冲和“1”状态没有电流信号。 0”状态。这项研究揭示了光存储系统的新可能性,为高效、可重写的数据存储和检索技术(例如下一代存储器)铺平了道路。
更新日期:2024-07-01
down
wechat
bug