当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microfluidic Continuous Synthesis of Size- and Facet-Controlled Porous Bi2O3 Nanospheres for Efficient CO2 to Formate Catalysis
Small ( IF 13.0 ) Pub Date : 2024-07-01 , DOI: 10.1002/smll.202403778
Zhenze Han 1 , Yuan Chang 2 , Jiaxuan Gao 1 , Taolue Liu 1 , Jialuo Li 1 , Jinxuan Liu 1 , Jiaxu Liu 1 , Yan Gao 1 , Junfeng Gao 2
Affiliation  

Bismuth-based catalysts are effective in converting carbon dioxide into formate via electrocatalysis. Precise control of the morphology, size, and facets of bismuth-based catalysts is crucial for achieving high selectivity and activity. In this work, an efficient, large-scale continuous production strategy is developed for achieving a porous nanospheres Bi2O3-FDCA material. First-principles simulations conducted in advance indicate that the Bi2O3 (111)/(200) facets help reduce the overpotential for formate production in electrocatalytic carbon dioxide reduction reaction (ECO2RR). Subsequently, using microfluidic technology and molecular control to precisely adjust the amount of 2, 5-furandicarboxylic acid, nanomaterials rich in (111)/(200) facets are successfully synthesized. Additionally, the morphology of the porous nanospheres significantly increases the adsorption capacity and active sites for carbon dioxide. These synergistic effects allow the porous Bi2O3-FDCA nanospheres to stably operate for 90 h in a flow cell at a current density of ≈250 mA cm2, with an average Faradaic efficiency for formate exceeding 90%. The approach of theoretically guided microfluidic technology for the large-scale synthesis of finely structured, efficient bismuth-based materials for ECO2RR may provide valuable references for the chemical engineering of intelligent nanocatalysts.

中文翻译:


微流体连续合成尺寸和面控制的多孔 Bi2O3 纳米球,用于有效的 CO2 甲酸盐催化



铋基催化剂可有效通过电催化将二氧化碳转化为甲酸盐。精确控制铋基催化剂的形态、尺寸和晶面对于实现高选择性和活性至关重要。在这项工作中,开发了一种高效、大规模连续生产策略来获得多孔纳米球 Bi 2 O 3 -FDCA 材料。预先进行的第一性原理模拟表明,Bi 2 O 3 (111)/(200) 晶面有助于降低电催化二氧化碳还原反应(ECO < b4> RR)。随后,利用微流控技术和分子控制精确调节2, 5-呋喃二甲酸的用量,成功合成了富含(111)/(200)晶面的纳米材料。此外,多孔纳米球的形态显着增加了二氧化碳的吸附能力和活性位点。这些协同效应使得多孔 Bi 2 O 3 -FDCA 纳米球在流通池中以 ≈250 mA cm 的电流密度稳定运行 90 小时 2 ,甲酸盐的平均法拉第效率超过 90%。理论引导的微流控技术大规模合成精细结构、高效铋基材料的ECO 2 RR可为智能纳米催化剂的化学工程提供有价值的参考。
更新日期:2024-07-01
down
wechat
bug