当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bimetal Oxides Anchored on Carbon Nanotubes/Nanosheets as High‐Efficiency and Durable Bifunctional Oxygen Catalyst for Advanced Zn–Air Battery: Experiments and DFT Calculations
Small ( IF 13.0 ) Pub Date : 2024-07-01 , DOI: 10.1002/smll.202402104
Qi‐Dong Ruan 1 , Yun‐Cai Zhao 2 , Rui Feng 1 , Mahmood Ul Haq 1 , Lu Zhang 1 , Jiu‐Ju Feng 1 , Yi‐Jing Gao 2 , Ai‐Jun Wang 1
Affiliation  

To meet increasing requirement for innovative energy storage and conversion technology, it is urgent to prepare effective, affordable, and long‐term stable oxygen electrocatalysts to replace precious metal‐based counterparts. Herein, a two‐step pyrolysis strategy is developed for controlled synthesis of Fe2O3 and Mn3O4 anchored on carbon nanotubes/nanosheets (Fe2O3‐Mn3O4‐CNTs/NSs). The typical catalyst has a high half‐wave potential (E1/2 = 0.87 V) for oxygen reduction reaction (ORR), accompanied with a smaller overpotential (η10 = 290 mV) for oxygen evolution reaction (OER), showing substantial improvement in the ORR and OER performances. As well, density functional theory calculations are performed to illustrate the catalytic mechanism, where the in situ generated Fe2O3 directly correlates to the reduced energy barrier, rather than Mn3O4. The Fe2O3‐Mn3O4‐CNTs/NSs‐based Zn–air battery exhibits a high‐power density (153 mW cm−2) and satisfyingly long durability (1650 charge/discharge cycles/550 h). This work provides a new reference for preparation of highly reversible oxygen conversion catalysts.

中文翻译:


锚定在碳纳米管/纳米片上的双金属氧化物作为先进锌空气电池的高效耐用双功能氧催化剂:实验和DFT计算



为了满足对创新能源存储和转换技术日益增长的需求,迫切需要制备有效、经济且长期稳定的氧电催化剂来替代贵金属基催化剂。在此,开发了一种两步热解策略来控制合成固定在碳纳米管/纳米片上的 Fe2O3 和 Mn3O4 (Fe2O3-Mn3O4-CNTs/NSs)。典型的催化剂对于氧还原反应(ORR)具有较高的半波电位(E1/2 = 0.87 V),并且对于析氧反应(OER)具有较小的过电位(η10 = 290 mV),显示出显着的改善。 ORR 和 OER 性能。此外,还进行了密度泛函理论计算来说明催化机制,其中原位生成的 Fe2O3(而不是 Mn3O4)与降低的能垒直接相关。 Fe2O3-Mn3O4-CNTs/NSs基锌空气电池具有高功率密度(153 mW cm−2)和令人满意的长耐用性(1650次充电/放电循环/550小时)。该工作为高可逆氧转化催化剂的制备提供了新的参考。
更新日期:2024-07-01
down
wechat
bug