当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Single Atom Ag Bonding Between PF3T Nanocluster and TiO2 Leads the Ultra‐Stable Visible‐Light‐Driven Photocatalytic H2 Production
Small ( IF 13.0 ) Pub Date : 2024-07-01 , DOI: 10.1002/smll.202403176
Jui‐Cheng Kao, Ting‐Yu Teng, Hao‐Wu Lin, Fan‐Gang Tseng, Li‐Yu Ting, Dinesh Bhalothia, Ho‐Hsiu Chou, Yu‐Chieh Lo, Jyh‐Pin Chou, Tsan‐Yao Chen

Atomic Ag cluster bonding is employed to reinforce the interface between PF3T nano‐cluster and TiO2 nanoparticle. With an optimized Ag loading (Ag/TiO2 = 0.5 wt%), the Ag atoms will uniformly disperse on TiO2 thus generating a high density of intermediate states in the band gap to form the electron channel between the terthiophene group of PF3T and the TiO2 in the hybrid composite (denoted as T@Ag05‐P). The former expands the photon absorption band width and the latter facilitates the core‐hole splitting by injecting the photon excited electron (from the excitons in PF3T) into the conduction band (CB) of TiO2. These characteristics enable the high efficiency of H2 production to 16 580 µmol h−1 g−1 and photocatalysis stability without degradation under visible light exposure for 96 h. Compared to that of hybrid material without Ag bonding (TiO2@PF3T), the H2 production yield and stability are improved by 4.1 and 18.2‐fold which shows the best performance among existing materials in similar component combination and interfacial reinforcement. The unique bonding method offers a new prospect to accelerate the development of photocatalytic hydrogen production technologies.

中文翻译:


PF3T 纳米团簇和 TiO2 之间的单原子银键合导致超稳定的可见光驱动光催化氢气生产



采用原子银簇键合来增强 PF3T 纳米簇和 TiO2 纳米颗粒之间的界面。通过优化的 Ag 负载量(Ag/TiO2 = 0.5 wt%),Ag 原子将均匀分散在 TiO2 上,从而在带隙中产生高密度的中间态,从而在 PF3T 的三噻吩基团和 TiO2 之间形成电子通道。杂化复合材料(表示为T@Ag05-P)。前者扩大了光子吸收带宽度,后者通过将光子激发电子(来自 PF3T 中的激子)注入 TiO2 的导带(CB)来促进核空穴分裂。这些特性使得产氢效率高达 16 580 µmol h−1 g−1,并且光催化稳定性在可见光照射 96 小时下不会降解。与无Ag键合的杂化材料(TiO2@PF3T)相比,氢气的产率和稳定性分别提高了4.1倍和18.2倍,在相似的组分组合和界面增强方面表现出现有材料中最好的性能。独特的键合方法为加速光催化制氢技术的发展提供了新的前景。
更新日期:2024-07-01
down
wechat
bug