当前位置: X-MOL 学术npj Comput. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Automated design of hybrid halide perovskite monolayers for band gap engineering
npj Computational Materials ( IF 9.4 ) Pub Date : 2024-06-29 , DOI: 10.1038/s41524-024-01323-5
Jie Hu , Jianwei Wang , Haiyuan Chen , Xiaobin Niu

The recent experimental confirmation of perovskite monolayers has sparked ongoing efforts in their prediction and synthesis, showcasing their flexible tunable band gap and potential in advanced functional devices. Although large-scale computational designs have been successfully performed for inorganic perovskite monolayers, the complexity introduced by organic cations hinders the same approaches applied to the hybrid halide perovskite monolayers. To address this challenge, we have proposed a high-throughput first-principles computational workflow that automates the design of hybrid halide perovskite monolayers. We strategically reduce the complexity of the configurations by analyzing the orientation of cations and the structural symmetry. Over 400 hybrid halide perovskite monolayers have been designed, and their structures and fundamental properties are stored in the database. Correlation analyses show a strong correlation between band gaps and metal-halogen-metal bond angles or metal-halogen bond lengths, consistent with prior studies for bulk and layered perovskites. The underlying physics that the band gap is modulated by the antibonding in the metal-halogen bond makes band gap engineering of hybrid halide perovskite monolayers feasible. Accordingly, initial research on lateral heterojunctions and solar cells has been conducted to explore the potential practical applications of the designed hybrid halide perovskite monolayers. Our study lays the foundation for further exploration of hybrid halide perovskite monolayers and highlights promising opportunities for their potential applications in electronic and optical devices.



中文翻译:


用于带隙工程的混合卤化物钙钛矿单层的自动化设计



最近对钙钛矿单层的实验证实引发了对其预测和合成的持续努力,展示了其灵活的可调节带隙和在先进功能器件中的潜力。尽管已经成功地对无机钙钛矿单层进行了大规模计算设计,但有机阳离子引入的复杂性阻碍了应用于混合卤化物钙钛矿单层的相同方法。为了应对这一挑战,我们提出了一种高通量第一原理计算工作流程,可自动设计混合卤化物钙钛矿单层。我们通过分析阳离子的方向和结构对称性来策略性地降低构型的复杂性。超过 400 种杂化卤化物钙钛矿单层材料已被设计出来,它们的结构和基本性质都存储在数据库中。相关分析显示带隙与金属-卤素-金属键角或金属-卤素键长之间存在很强的相关性,这与之前对块状和层状钙钛矿的研究一致。带隙由金属-卤素键中的反键调节的基本物理原理使得杂化卤化物钙钛矿单层的带隙工程变得可行。因此,对横向异质结和太阳能电池进行了初步研究,以探索所设计的混合卤化物钙钛矿单层的潜在实际应用。我们的研究为进一步探索混合卤化物钙钛矿单层奠定了基础,并强调了其在电子和光学器件中潜在应用的前景。

更新日期:2024-07-01
down
wechat
bug