当前位置: X-MOL 学术Nat. Photon. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-entropy hybrid perovskites with disordered organic moieties for perovskite solar cells
Nature Photonics ( IF 32.3 ) Pub Date : 2024-07-01 , DOI: 10.1038/s41566-024-01468-1
Yuan Tian , Xu Zhang , Ke Zhao , Xiaohe Miao , Tianqi Deng , Wei Fan , Donger Jin , Xuanyu Jiang , Shulin Zhong , Xiaonan Wang , Sisi Wang , Pengju Shi , Liuwen Tian , Libing Yao , Shaokuan Gong , Xuemeng Yu , Xingyu Gao , Zhong Chen , Xihan Chen , Yunhao Lu , Vinayak Shrote , Yang Yang , Deren Yang , Rui Wang , Jingjing Xue

High-entropy materials consisting of disordered multiple components can exhibit enhanced materials properties compared with their individual constituents. Although various high-entropy materials have been developed based on the configurational disorder of mixed inorganic components, the potential of organic moieties for high-entropy structures remains underexplored. Here we report a family of high-entropy organic–inorganic hybrid perovskites for photovoltaic applications. By mixing different A-site organic cations with various alkyl chains, we obtain a hybrid crystal structure with ordered inorganic frameworks and disordered organic moieties, leading to increased entropy. The hybrid perovskite exhibits superior properties compared with its single-component counterpart, including increased resilience to structural transitions and heat stress. When used in solar cells, the high-entropy hybrid perovskite leads to devices with a power conversion efficiency of 25.7% (certified, 25.5%) for an inverted-cell architecture. Cells retain over 98% of their initial power conversion efficiency after 1,000 h of operation under continuous illumination (AM 1.5 G), with a linear extrapolation to the T90 value of 5,040 h. In particular, the structural disorder of this class of high-entropy materials can also reduce non-radiative recombinations for a wide range of perovskite composition, stoichiometry deviation, film-processing history and device architecture. This universal and error-tolerant strategy can, thus, benefit the production yield of perovskite solar cells in future industrial mass production. Given the rich chemistry of organic moieties and mixing configuration, this work may also open up more opportunities to tune the stability and optoelectronic properties of perovskite materials for photoelectric applications.



中文翻译:


用于钙钛矿太阳能电池的具有无序有机部分的高熵杂化钙钛矿



与单个成分相比,由无序的多个成分组成的高熵材料可以表现出增强的材料性能。尽管基于混合无机组分的构型无序已经开发了各种高熵材料,但有机部分对于高熵结构的潜力仍未得到充分开发。在这里,我们报告了一系列用于光伏应用的高熵有机-无机杂化钙钛矿。通过将不同的 A 位有机阳离子与不同的烷基链混合,我们获得了具有有序无机骨架和无序有机部分的杂化晶体结构,从而导致熵增加。与单组分对应物相比,混合钙钛矿表现出优异的性能,包括增强的结构转变和热应力恢复能力。当用于太阳能电池时,高熵混合钙钛矿可使倒置电池架构的功率转换效率达到 25.7%(经认证为 25.5%)。在连续照明 (AM 1.5 G) 下运行 1,000 小时后,电池仍保留超过 98% 的初始功率转换效率,线性外推至 5,040 小时的 T 90 值。特别是,此类高熵材料的结构无序还可以减少各种钙钛矿成分、化学计量偏差、薄膜加工历史和器件架构的非辐射复合。因此,这种通用且容错的策略可以有利于未来工业大规模生产中钙钛矿太阳能电池的产量。 鉴于有机部分和混合配置的丰富化学性质,这项工作也可能为调整用于光电应用的钙钛矿材料的稳定性和光电性能提供更多机会。

更新日期:2024-07-01
down
wechat
bug