当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spodumene nanosheets@ZrO2-SiO2 heterostructure nanofibers modified separator for long-cycle lithium-sulfur batteries
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2024-06-29 , DOI: 10.1016/j.cej.2024.153619
Lin Li , Bin Yue , Yingying Bao , Shan Jiang , Hong Shao , Qianli Ma , Wensheng Yu , Jinxian Wang , Xiangting Dong

Lithium-sulfur batteries have become highly promising next-generation energy storage devices owing to their high theoretical capacity density, environmental friendliness, high cost-effectiveness, etc. Nevertheless, the commercial applications of Li-S batteries are severely hampered by the fatal shuttle effect of soluble lithium polysulfides (LiPSs) and sluggish reaction kinetics. To address these issues, a unique modifying interlayer of ZrO2-SiO2 heterostructure nanofibers inlaid with spodumene nanosheets (Spodumene@ZrO2-SiO2) has been innovatively designed and facilely prepared. In the interlayer, ZrO2-SiO2 heterostructure nanofibers provide abundant catalytic active sites to promote the conversion of LiPSs to improve kinetics, and effectively anchor LiPSs to reduce the shuttle effect. Simultaneously, the natural spodumene nanosheets as Li+ sieves offer selective Li+ transfer channels to allow Li+ fast transportation, but physically hinder the transportation of LiPSs owing to their small-size channels, further suppressing the shuttle effect of LiPSs. As a result, only host-free sulfur cathode by using this interlayer modified separator exhibits an extremely low capacity loss rate of 0.077 % per cycle during 500 cycles under 1 C. Even at the 2 C current density, the cathode still maintains a discharge-specific capacity of 630 mAh g−1, demonstrating the effectiveness of this strategy. With the help of combination of DFT and BVS theoretical calculations with the sound experiments, it is proved that the synergistic effects among physically and chemically anchoring LiPSs and catalytic capacity for LiPSs conversion of ZrO2-SiO2 heterostructure nanofibers, the Li+ selective transport and blocking effect for LiPSs shuttling of the spodumene nanosheets jointly achieve excellent long-life stability of Li-S battery. This study provides valuable insight into the design and fabrication of innovative separators for highly stable Li-S batteries via a cost-effective and environmentally friendly approach.

中文翻译:


锂辉石纳米片@ZrO2-SiO2异质结构纳米纤维改性长循环锂硫电池隔膜



锂硫电池由于具有高理论容量密度、环境友好、高成本效益等优点,成为极具前景的下一代储能器件。然而,致命的穿梭效应严重阻碍了锂硫电池的商业应用。可溶性多硫化锂(LiPS)和缓慢的反应动力学。为了解决这些问题,创新设计并轻松制备了镶嵌锂辉石纳米片的ZrO2-SiO2异质结构纳米纤维的独特改性中间层(Spodumene@ZrO2-SiO2)。在中间层中,ZrO2-SiO2异质结构纳米纤维提供丰富的催化活性位点,促进LiPSs的转化以改善动力学,并有效锚定LiPSs以减少穿梭效应。同时,作为Li+筛的天然锂辉石纳米片提供了选择性的Li+传输通道,使Li+能够快速传输,但由于其小尺寸通道,物理上阻碍了LiPSs的传输,进一步抑制了LiPSs的穿梭效应。结果,只有使用这种层间改性隔膜的无主体硫正极在1 C下的500次循环中表现出极低的容量损失率,每次循环为0.077%。即使在2 C电流密度下,正极仍然保持放电-比容量为 630 mAh g−1,证明了该策略的有效性。 借助DFT和BVS理论计算与完善的实验相结合,证明了ZrO2-SiO2异质结构纳米纤维的物理化学锚定LiPSs与LiPSs转化催化能力之间的协同效应,Li+选择性传输和阻挡效应锂辉石纳米片的LiPS穿梭共同实现了锂硫电池优异的长寿命稳定性。这项研究通过经济高效且环保的方法,为高度稳定的锂硫电池的创新隔膜的设计和制造提供了宝贵的见解。
更新日期:2024-06-29
down
wechat
bug