当前位置: X-MOL 学术J. Mech. Phys. Solids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A unified discontinuous Galerkin formulation for interfacial multiphysics modeling of thermo-chemically driven fracture
Journal of the Mechanics and Physics of Solids ( IF 5.0 ) Pub Date : 2024-06-18 , DOI: 10.1016/j.jmps.2024.105748
Daniel Pickard , Raúl Radovitzky

Many engineering and natural materials exhibit coupled thermo-chemo-mechanical phenomena, which can result in embrittlement and fracture. These fractures, in turn, can alter the subsequent thermal, chemical, and mechanical response. We present a theoretical formulation and computational framework for the analysis of thermo-chemically fractured solids, with emphasis on the post-fracture thermal and chemical interfacial behavior. The theoretical model is based on the thermodynamically-consistent formulation of Loeffel and Anand (IJP, 2011). The computational method extends the scalable discontinuous Galerkin/Cohesive Zone Model (DG/CZM) of Radovitzky et al. (CMAME, 2011) to thermo-chemo-mechanics, which facilitates coupled, large-scale simulations of materials and structures containing failed interfaces. In the proposed framework, all balance laws are enforced weakly via the DG formalism, resulting in a unified formulation for multiphysics problems in solids. This naturally enables the incorporation of general interface models, e.g. to account for effects such as the aeolotropic reduction in thermochemical transport due to the presence of fractures, or the acceleration of chemical reactions along crack flanks. The approach is verified against two analytical solutions of boundary value problems drawn from thermo-poro-elasticity and thermally-driven delamination. A scalable, three-dimensional simulation of thermochemically-driven concrete cracking illustrates the complete capabilities of the interfacial multiphysics modeling framework.

中文翻译:


用于热化学驱动断裂界面多物理场建模的统一间断伽辽金公式



许多工程和天然材料表现出耦合的热化学机械现象,这可能导致脆化和断裂。这些断裂反过来又会改变随后的热、化学和机械响应。我们提出了用于分析热化学断裂固体的理论公式和计算框架,重点关注断裂后的热和化学界面行为。该理论模型基于 Loeffel 和 Anand 的热力学一致公式(IJP,2011)。该计算方法扩展了 Radovitzky 等人的可扩展不连续伽辽金/粘性区模型 (DG/CZM)。 (CMAME,2011)到热化学力学,这有助于对包含失效界面的材料和结构进行耦合、大规模模拟。在提议的框架中,所有平衡定律都通过 DG 形式主义弱执行,从而为固体中的多物理问题提供了统一的公式。这自然可以合并通用接口模型,例如考虑诸如由于裂缝的存在而引起的热化学传输的各向异性减少或沿着裂缝侧面的化学反应的加速等效应。该方法针对由热孔隙弹性和热驱动分层得出的边值问题的两个解析解进行了验证。热化学驱动的混凝土开裂的可扩展三维模拟展示了界面多物理场建模框架的完整功能。
更新日期:2024-06-18
down
wechat
bug