当前位置: X-MOL 学术J. Phys. Chem. C › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Controlling Mechanism of the Water–Gas Shift Reaction Activity Catalyzed by Au Single Atoms Supported on Multicomponent Oxides
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2024-06-28 , DOI: 10.1021/acs.jpcc.4c01559
Jungwoo Choi 1 , Hyuk Choi 2 , Ju Hyeok Lee 2 , Eunji Kang 2 , Kihyun Shin 3 , Hyuck Mo Lee 1 , Hyun You Kim 2
Affiliation  

The complicated reaction pathway of the water–gas shift reaction (WGSR) hinders understanding the overall reaction mechanism and extracting the factors to design better performing catalysts. Here, we use density functional theory to study the mechanism of WGSR catalyzed by Au single atoms stabilized at the CeOx–TiO2 interfaces on TiO2 particles (ACT catalyst). We constructed two energetic landscapes of the WGSR (redox and associative mechanisms), concurrently presenting the H2 formation as a rate-determining step. Electronic analysis data showed that the charge state of the oxygen ions participating in WGSR strongly correlates with the oxygen vacancy formation energy (OVF) and hydrogen binding energy (ΔEH), directly scaling the CO oxidation power and the H2 production ability. Further expansion toward various Au on oxide–oxide combinations confirmed that the delicate control of metal-oxide-oxide interfaces with optimized local electronic structures expresses the rational design of a WGSR catalyst.

中文翻译:


多元氧化物负载Au单原子催化水煤气变换反应活性的控制机制



水煤气变换反应(WGSR)复杂的反应路径阻碍了理解整体反应机理并提取因素来设计性能更好的催化剂。在这里,我们利用密度泛函理论研究了稳定在 TiO 2 颗粒上的 CeO x -TiO 2 界面上的 Au 单原子催化 WGSR 的机理( ACT 催化剂)。我们构建了 WGSR 的两个能量景观(氧化还原机制和缔合机制),同时将 H 2 形成作为速率决定步骤。电子分析数据表明,参与WGSR的氧离子的电荷态与氧空位形成能(OVF)和氢结合能(ΔE H )密切相关,直接缩放CO氧化功率和H2 2 生产能力。对氧化物-氧化物组合上各种金的进一步扩展证实,通过优化局部电子结构对金属-氧化物-氧化物界面的精细控制体现了WGSR催化剂的合理设计。
更新日期:2024-06-28
down
wechat
bug