当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanism of Antiferroelectricity in Polycrystalline ZrO2
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-06-29 , DOI: 10.1002/adfm.202405513
Richard Ganser 1 , Patrick D. Lomenzo 2 , Liam Collins 3 , Bohan Xu 2 , Luis Azevedo Antunes 1 , Thomas Mikolajick 2, 4 , Uwe Schroeder 2 , Alfred Kersch 1
Affiliation  

The size and electric field dependent induction of polarization in antiferroelectric ZrO2 is the key to several technological applications that are unimaginable a decade ago. However, the lack of a deeper understanding of the mechanism hinders progress. Molecular dynamics simulations of polycrystalline ZrO2, based on machine‐learned interatomic forces with near ab initio quality, shed light on the fundamental mechanism of the size effect on the transition fields. Stress in the oxygen sublattice is the most important factor. The so constructed interatomic forces allow the calculation of the transition fields as a function of the ZrO2 film thickness and predict the ferroelectricity at large thickness. The simulation results are validated with electrical and piezo response force microscopy measurements. The results allow a clear interpretation of the properties of the double‐hysteresis loops as well as the construction of the free energy landscape of ZrO2 grains.

中文翻译:


多晶ZrO2的反铁电机理



反铁电 ZrO2 中的尺寸和电场相关的极化感应是十年前难以想象的多项技术应用的关键。然而,缺乏对该机制更深入的了解阻碍了进展。多晶 ZrO2 的分子动力学模拟基于机器学习的原子间力,具有近乎从头开始的质量,揭示了过渡场尺寸效应的基本机制。氧亚晶格中的应力是最重要的因素。如此构造的原子间力允许计算作为 ZrO2 薄膜厚度的函数的过渡场,并预测大厚度下的铁电性。模拟结果通过电和压电响应力显微镜测量进行验证。结果可以清楚地解释双磁滞回线的特性以及 ZrO2 颗粒的自由能景观的构建。
更新日期:2024-06-29
down
wechat
bug