当前位置: X-MOL 学术J. Mater. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hollow engineering and component optimization strategy to construct flower-like yolk-shell structure SiO2@Void@C@WS2 multicomponent nanocomposites for microwave absorption
Journal of Materials Science & Technology ( IF 11.2 ) Pub Date : 2024-06-29 , DOI: 10.1016/j.jmst.2024.06.012
Yaoyi Li , Xiaosi Qi , Beibei Zhan , Junfei Ding , Yunpeng Qu , Xiu Gong , Jing-Liang Yang , Yanli Chen , Qiong Peng , Wei Zhong , Kai Sun

Hollow engineering plays a crucial role in enhancing interfacial polarization, which is an essential factor in microwave absorption. Herein, an in-situ growth approach was adopted to successively coating C layer and WS nanosheets on the surface SiO nanosphere. The obtained results suggested that the formed SiO@Void@C@WS multi-component nanocomposites (MCNCs) reveal a representative flower-like yolk-shell structure, which were manufactured massively through a simple channel. Additionally, the obtained SiO@Void@C@WS MCNCs presented a more and more obvious yolk-shell structure and reduced WS content with decreasing the addition of SiO@C or tungsten and sulfur sources. Because of their distinctive structures and remarkable cooperative effects, the SiO@Void@C@WS displayed excellent microwave absorption performances. Through the majorization of hollow structure and WS, improved properties of SiO@Void@C@WS MCNCs could be acquired owing to their boosted polarization and conductive loss capabilities. Amongst, the resulting SiO@Void@C@WS MCNCs exhibited the effective absorption band and minimum reflection loss values of 5.40 GHz and −45.50 dB with matching thicknesses of 1.78 and 1.55 mm, respectively. Therefore, our findings employed hollow engineering and optimization strategies for components to design and fabricate the yolk-shell structure flower-like MCNCs, which acted as highly efficient wide-band microwave absorbing materials.

中文翻译:


空心工程和成分优化策略构建花状蛋黄壳结构SiO2@Void@C@WS2微波吸收多元纳米复合材料



中空工程在增强界面极化方面起着至关重要的作用,而界面极化是微波吸收的重要因素。在此,采用原位生长方法在SiO纳米球表面连续涂覆C层和WS纳米片。所得结果表明,形成的SiO@Void@C@WS多组分纳米复合材料(MCNC)具有代表性的花状蛋黄壳结构,该结构是通过简单的通道大规模制造的。此外,随着SiO@C或钨、硫源添加量的减少,所得SiO@Void@C@WS MCNCs呈现出越来越明显的蛋黄壳结构,并且WS含量降低。由于其独特的结构和显着的协同效应,SiO@Void@C@WS表现出优异的微波吸收性能。通过空心结构和 WS 的主要化,SiO@Void@C@WS MCNCs 的极化和导电损耗能力得到提高,因此可以获得改进的性能。其中,所得的SiO@Void@C@WS MCNC的有效吸收带和最小反射损耗值分别为5.40 GHz和-45.50 dB,匹配厚度分别为1.78和1.55 mm。因此,我们的研究结果采用中空工程和组件优化策略来设计和制造蛋黄壳结构花状MCNC,作为高效宽带微波吸收材料。
更新日期:2024-06-29
down
wechat
bug