当前位置: X-MOL 学术Case Stud. Therm. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A case study of thermal performance of gas-steam combined cycle with gas turbine inlet air cooling and condenser deep cooling
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-06-25 , DOI: 10.1016/j.csite.2024.104747
Hemin Hu , Tao Wang , Yufei Ren , Fan Zhang , Bing Zhang , Jianchao Li

To enhance power generation during high summer temperatures and address the power supply and demand imbalance in gas-steam combined cycle, this study explored the exhaust gas waste heat refrigeration scheme, along with the optimal scheduling of cooling capacity between the precooling of inlet air for the gas turbines and deep cooling for condenser in steam cycle. Using the Ebsilon software, we investigate the thermal performance of the gas cycle, steam cycle, and the overall gas-steam combined cycle under various off-design operating conditions, including varying cooling capacity distributions, ambient temperatures, and generation loads. Based on our calculations, it is advisable to prioritize cooling capacity for precooling the ambient air for the gas cycle, balancing power generation and thermal efficiency. After the transformation, the power generation of the gas-steam combined cycle remains relatively stable across varying ambient temperatures, achieving a significant 10.9 % increase compared to pre-transformation levels under a 39 °C ambient temperature and 100 % generation load. Furthermore, the thermal efficiency of the gas-steam combined cycle improves by 1.11 % under a 40 % generation load condition. As ambient temperatures rise, the benefits of the inlet air cooling scheme become more apparent, validating its effectiveness in addressing the inherent summer power supply and demand challenges.

中文翻译:


燃机进口空冷+凝汽器深冷燃气-蒸汽联合循环热工性能案例研究



为提高夏季高温发电量,解决燃气-蒸汽联合循环电力供需失衡问题,探讨了废气余热制冷方案,以及进风预冷与机组冷量的优化调度。燃气轮机和蒸汽循环中冷凝器的深度冷却。使用 Ebsilon 软件,我们研究了各种非设计运行条件下的气体循环、蒸汽循环和整个燃气-蒸汽联合循环的热性能,包括不同的冷却能力分布、环境温度和发电负荷。根据我们的计算,建议优先考虑冷却能力,以预冷气体循环的环境空气,平衡发电和热效率。改造后,燃气-蒸汽联合循环发电量在不同环境温度下均保持相对稳定,在39℃环境温度、100%发电负荷下,较改造前大幅提升10.9%。此外,在40%发电负荷情况下,燃气-蒸汽联合循环热效率提高了1.11%。随着环境温度升高,进风冷却方案的优势变得更加明显,验证了其在解决固有的夏季电力供需挑战方面的有效性。
更新日期:2024-06-25
down
wechat
bug