当前位置: X-MOL 学术Prog. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The rise of borophene
Progress in Materials Science ( IF 33.6 ) Pub Date : 2024-06-25 , DOI: 10.1016/j.pmatsci.2024.101331
Prashant Kumar , Gurwinder Singh , Rohan Bahadur , Zhixuan Li , Xiangwei Zhang , C.I. Sathish , Mercy R. Benzigar , Thi Kim Anh Tran , Nisha T. Padmanabhan , Sithara Radhakrishnan , Jith C Janardhanan , Christy Ann Biji , Ann Jini Mathews , Honey John , Ehsan Tavakkoli , Ramaswamy Murugavel , Soumyabrata Roy , Pulickel M. Ajayan , Ajayan Vinu

Borophene stands out uniquely among Xenes with its metallic character, Dirac nature, exceptional electron mobility, thermal conductivity, and Young’s moduli—surpassing graphene. Invented in 2015, various methods, including atomic layer deposition, molecular beam epitaxy, and chemical vapor deposition, have successfully been demonstrated to realize substrate-supported crystal growth. Top-down approaches like micromechanical, sonochemical, solvothermal and modified hummer’s techniques have also been employed. Thanks to its high electronic mobility, borophene serves as an active material for ultrafast sensing of light, gases, molecules, and strain. Its metallic behaviour, electrochemical activity, and anti-corrosive nature make it ideal for applications in energy storage and catalysis. It has been proven effective as an electrocatalyst for HER, OER, water splitting, CO reduction, and NH reduction reactions. Beyond this, borophene has found utility in bioimaging, biosensing, and various biomedical applications. A special emphasis will be given on the borophene nanoarchitectonics i.e. doped borophene and borophene-based hybrids with other 2D materials and nanoparticles and the theoretical understanding of these emerging materials systems to gain more insights on their electronic structure and properties, aiming to manipulate borophene for tailored applications.

中文翻译:

 硼烯的兴起


硼烯以其金属特性、狄拉克性质、卓越的电子迁移率、导热性和超越石墨烯的杨氏模量而在色烯中脱颖而出。 2015年发明的多种方法,包括原子层沉积、分子束外延和化学气相沉积,已成功证明可以实现衬底支撑的晶体生长。还采用了自上而下的方法,如微机械、声化学、溶剂热和改良悍马技术。由于其高电子迁移率,硼烯可作为超快传感光、气体、分子和应变的活性材料。其金属行为、电化学活性和耐腐蚀性使其非常适合能源存储和催化应用。它已被证明作为 HER、OER、水分解、CO 还原和 NH 还原反应的有效电催化剂。除此之外,硼烯还在生物成像、生物传感和各种生物医学应用中发挥了作用。将特别强调硼烯纳米结构,即掺杂硼烯和基于硼烯的与其他二维材料和纳米颗粒的杂化物,以及对这些新兴材料系统的理论理解,以获得对其电子结构和性能的更多见解,旨在操纵硼烯以定制应用程序。
更新日期:2024-06-25
down
wechat
bug