当前位置:
X-MOL 学术
›
Adv. Drug Deliver. Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Cytoskeleton-modulating nanomaterials and their therapeutic potentials
Advanced Drug Delivery Reviews ( IF 15.2 ) Pub Date : 2024-06-19 , DOI: 10.1016/j.addr.2024.115362 Jinwon Park 1 , Yina Wu 1 , Jung Suk Kim 1 , Junho Byun 1 , Jaiwoo Lee 1 , Yu-Kyoung Oh 1
Advanced Drug Delivery Reviews ( IF 15.2 ) Pub Date : 2024-06-19 , DOI: 10.1016/j.addr.2024.115362 Jinwon Park 1 , Yina Wu 1 , Jung Suk Kim 1 , Junho Byun 1 , Jaiwoo Lee 1 , Yu-Kyoung Oh 1
Affiliation
The cytoskeleton, an intricate network of protein fibers within cells, plays a pivotal role in maintaining cell shape, enabling movement, and facilitating intracellular transport. Its involvement in various pathological states, ranging from cancer proliferation and metastasis to the progression of neurodegenerative disorders, underscores its potential as a target for therapeutic intervention. The exploration of nanotechnology in this realm, particularly the use of nanomaterials for cytoskeletal modulation, represents a cutting-edge approach with the promise of novel treatments. Inorganic nanomaterials, including those derived from gold, metal oxides, carbon, and black phosphorus, alongside organic variants such as peptides and proteins, are at the forefront of this research. These materials offer diverse mechanisms of action, either by directly interacting with cytoskeletal components or by influencing cellular signaling pathways that, in turn, modulate the cytoskeleton. Recent advancements have introduced magnetic field-responsive and light-responsive nanomaterials, which allow for targeted and controlled manipulation of the cytoskeleton. Such precision is crucial in minimizing off-target effects and enhancing therapeutic efficacy. This review explores the importance of research into cytoskeleton-targeting nanomaterials for developing therapeutic interventions for a range of diseases. It also addresses the progress made in this field, the challenges encountered, and future directions for using nanomaterials to modulate the cytoskeleton. The continued exploration of nanomaterials for cytoskeleton modulation holds great promise for advancing therapeutic strategies against a broad spectrum of diseases, marking a significant step forward in the intersection of nanotechnology and medicine.
中文翻译:
细胞骨架调节纳米材料及其治疗潜力
细胞骨架是细胞内复杂的蛋白质纤维网络,在维持细胞形状、促进运动和促进细胞内运输方面发挥着关键作用。它参与各种病理状态,从癌症增殖和转移到神经退行性疾病的进展,强调了它作为治疗干预目标的潜力。纳米技术在这一领域的探索,特别是使用纳米材料进行细胞骨架调节,代表了一种有望带来新颖治疗方法的尖端方法。无机纳米材料,包括源自金、金属氧化物、碳和黑磷的纳米材料,以及肽和蛋白质等有机变体,处于这项研究的前沿。这些材料提供了多种作用机制,或者通过直接与细胞骨架成分相互作用,或者通过影响细胞信号传导途径,进而调节细胞骨架。最近的进展引入了磁场响应和光响应纳米材料,可以对细胞骨架进行有针对性和受控的操纵。这种精度对于最大限度地减少脱靶效应和提高治疗效果至关重要。这篇综述探讨了研究细胞骨架靶向纳米材料对于开发一系列疾病的治疗干预措施的重要性。它还讨论了该领域取得的进展、遇到的挑战以及使用纳米材料调节细胞骨架的未来方向。 对用于细胞骨架调节的纳米材料的持续探索为推进针对广泛疾病的治疗策略带来了巨大的希望,标志着纳米技术和医学的交叉向前迈出了重要一步。
更新日期:2024-06-19
中文翻译:
细胞骨架调节纳米材料及其治疗潜力
细胞骨架是细胞内复杂的蛋白质纤维网络,在维持细胞形状、促进运动和促进细胞内运输方面发挥着关键作用。它参与各种病理状态,从癌症增殖和转移到神经退行性疾病的进展,强调了它作为治疗干预目标的潜力。纳米技术在这一领域的探索,特别是使用纳米材料进行细胞骨架调节,代表了一种有望带来新颖治疗方法的尖端方法。无机纳米材料,包括源自金、金属氧化物、碳和黑磷的纳米材料,以及肽和蛋白质等有机变体,处于这项研究的前沿。这些材料提供了多种作用机制,或者通过直接与细胞骨架成分相互作用,或者通过影响细胞信号传导途径,进而调节细胞骨架。最近的进展引入了磁场响应和光响应纳米材料,可以对细胞骨架进行有针对性和受控的操纵。这种精度对于最大限度地减少脱靶效应和提高治疗效果至关重要。这篇综述探讨了研究细胞骨架靶向纳米材料对于开发一系列疾病的治疗干预措施的重要性。它还讨论了该领域取得的进展、遇到的挑战以及使用纳米材料调节细胞骨架的未来方向。 对用于细胞骨架调节的纳米材料的持续探索为推进针对广泛疾病的治疗策略带来了巨大的希望,标志着纳米技术和医学的交叉向前迈出了重要一步。