当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Constructing hierarchical CoGa2O4−S@NiCo2S4 core−shell heterostructures as a battery-type electrode material for hybrid supercapacitors
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2024-06-25 , DOI: 10.1016/j.jallcom.2024.175264
Jiangpeng Li , Yongmei Bai , Yongqian Xu , Shiguo Sun , Hongjuan Li

Developing battery-type electrode materials with diverse core-shell heterostructures is the most crucial aspect in fabricating hybrid supercapacitors with high energy density and cycling stability. Additionally, mixed-metal sulfides are highly regarded due to their favorable theoretical specific capacity and conductivity. Here, we have devised hierarchical CoGaO−S@NiCoS core−shell heterostructures, featuring urchin−like and hexagonal morphologies. The needle−like shell significantly promotes the contact area with the electrolyte, facilitating OH penetration to the core structure. This elevation improves both the diffusion−controlled process and reaction kinetics, thereby enhancing electrode material utilization and redox capability. Therefore, the optimized CoGaO−S@NiCoS exhibits a specific capacity of 959.0 C·g (capacitance of 2131.1 F·g) at 1 A·g. The assembled CoGaO−S@NiCoS//AC hybrid supercapacitor delivers an energy density of 41.17 Wh kg at 850 W kg, with a capacity retention rate of 93.60 % after 10,000 cycles. This study provides a novel approach to enhance the electrochemical performance of supercapacitors by optimizing reaction kinetics.

中文翻译:


构建分层 CoGa2O4−S@NiCo2S4 核壳异质结构作为混合超级电容器的电池型电极材料



开发具有多种核壳异质结构的电池型电极材料是制造具有高能量密度和循环稳定性的混合超级电容器最关键的方面。此外,混合金属硫化物由于其良好的理论比容量和电导率而受到高度重视。在这里,我们设计了分层 CoGaO−S@NiCoS 核壳异质结构,具有海胆状和六边形形态。针状外壳显着增加了与电解质的接触面积,促进 OH 渗透到核心结构。这种提升改善了扩散控制过程和反应动力学,从而提高了电极材料的利用率和氧化还原能力。因此,优化后的CoGaO−S@NiCoS在1A·g下表现出959.0C·g的比容量(电容为2131.1F·g)。组装好的CoGaO−S@NiCoS//AC混合超级电容器在850W kg时的能量密度为41.17Wh kg,10,000次循环后容量保持率为93.60%。这项研究提供了一种通过优化反应动力学来增强超级电容器电化学性能的新方法。
更新日期:2024-06-25
down
wechat
bug